On Fuchsian Systems with Decomposable Monodromy
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 196-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give new sufficient conditions under which a Fuchsian system with decomposable monodromy can be meromorphically transformed into a Fuchsian system with decomposable set of coefficients.
@article{TM_2002_238_a10,
     author = {S. Malek},
     title = {On {Fuchsian} {Systems} with {Decomposable} {Monodromy}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {196--203},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a10/}
}
TY  - JOUR
AU  - S. Malek
TI  - On Fuchsian Systems with Decomposable Monodromy
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 196
EP  - 203
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a10/
LA  - en
ID  - TM_2002_238_a10
ER  - 
%0 Journal Article
%A S. Malek
%T On Fuchsian Systems with Decomposable Monodromy
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 196-203
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a10/
%G en
%F TM_2002_238_a10
S. Malek. On Fuchsian Systems with Decomposable Monodromy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 196-203. http://geodesic.mathdoc.fr/item/TM_2002_238_a10/

[1] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl

[2] Bolibrukh A. A., “On sufficient conditions for the existence of a Fuchsian equation with prescribed monodromy”, J. Dyn. and Control Syst., 5:4 (1999), 453–472 | DOI | MR | Zbl

[3] Bolibrukh A. A., “Holomorphic bundles, associated with linear differential equations and the Riemann–Hilbert problem”, The Stokes phenomenon and Hilbert's 16th problem (Groningen, 1995), World Sci., Singapore, 1996, 51–70 | MR

[4] Gladyshev A. I., “O privodimykh fuksovykh sistemakh chetvertogo poryadka”, Problemy matematiki v fizicheskikh i tekhnicheskikh zadachakh, MFTI, M., 1994, 66–80

[5] Malek S., “Fuchsian systems with reducible monodromy are meromorphically equivalent to reducible Fuchsian systems”, Tr. MIAN, 236, 2002, 481–490 | MR | Zbl