Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_238_a10, author = {S. Malek}, title = {On {Fuchsian} {Systems} with {Decomposable} {Monodromy}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {196--203}, publisher = {mathdoc}, volume = {238}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a10/} }
S. Malek. On Fuchsian Systems with Decomposable Monodromy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 196-203. http://geodesic.mathdoc.fr/item/TM_2002_238_a10/
[1] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl
[2] Bolibrukh A. A., “On sufficient conditions for the existence of a Fuchsian equation with prescribed monodromy”, J. Dyn. and Control Syst., 5:4 (1999), 453–472 | DOI | MR | Zbl
[3] Bolibrukh A. A., “Holomorphic bundles, associated with linear differential equations and the Riemann–Hilbert problem”, The Stokes phenomenon and Hilbert's 16th problem (Groningen, 1995), World Sci., Singapore, 1996, 51–70 | MR
[4] Gladyshev A. I., “O privodimykh fuksovykh sistemakh chetvertogo poryadka”, Problemy matematiki v fizicheskikh i tekhnicheskikh zadachakh, MFTI, M., 1994, 66–80
[5] Malek S., “Fuchsian systems with reducible monodromy are meromorphically equivalent to reducible Fuchsian systems”, Tr. MIAN, 236, 2002, 481–490 | MR | Zbl