Geometric L\'evy Process Pricing Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 185-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider models for stock prices that relate to random processes with independent homogeneous increments (Lévy processes). These models are arbitrage-free but correspond to an incomplete financial market. There are many different approaches for pricing financial derivatives. We consider here mainly the approach based on minimal relative entropy. This method is related to a utility function of exponential type and the Esscher transformation of probabilistic measures.
@article{TM_2002_237_a8,
     author = {Y. Miyahara and A. Novikov},
     title = {Geometric {L\'evy} {Process} {Pricing} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a8/}
}
TY  - JOUR
AU  - Y. Miyahara
AU  - A. Novikov
TI  - Geometric L\'evy Process Pricing Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 185
EP  - 200
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a8/
LA  - en
ID  - TM_2002_237_a8
ER  - 
%0 Journal Article
%A Y. Miyahara
%A A. Novikov
%T Geometric L\'evy Process Pricing Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 185-200
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a8/
%G en
%F TM_2002_237_a8
Y. Miyahara; A. Novikov. Geometric L\'evy Process Pricing Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 185-200. http://geodesic.mathdoc.fr/item/TM_2002_237_a8/

[1] Amaral L., Plerou V., Gopikeishnan P., Meyer M., Stanly H., “The distribution of returns of stock prices”, Intern. J. Theor. and Appl. Fin., 3:3 (2000), 365–369 | DOI | Zbl

[2] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 ; Handbook of mathematical functions with formulas, graphs and mathematical tables, eds. M. Abramowitz, I. A. Stegun, Wiley, New York, 1972 | MR

[3] Albanese C., Jaimungal S., Rubisov D., “Jumping in line”, Risk Magazine, 2001, 65–68, Febr

[4] Andersen L., Andreasen J., Jump-diffusion processes: Volatility smile fitting and numerical methods for pricing, Working paper, 1999; http://www.ssrn.com

[5] Barndorff-Nielsen O., Halgreen O., “Infinite divisibility of the hyperbolic and general inverse Gaussian eedistributions”, Ztschr. Wahrscheinlichkeitsth. und Verw. Geb., 38 (1977), 309–312 | DOI | MR

[6] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Polit. Econ., 81 (1973), 637–654 | DOI | Zbl

[7] Bertoin J., Lévy processes, Cambridge Univ. Press, Cambridge, 1996 | MR

[8] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 ; Borovkov A., Stochastic processes in queueing theory, Appl. Math., 4, Springer-Verl., Berlin, 1976 | MR | MR | Zbl

[9] Bühlmann H., Delbaen F., Embrechts P., Shiryaev A. N., “No-arbitrage, change of measure and conditional Esscher transforms”, CWI Quart., 9:4 (1996), 291–317 | MR | Zbl

[10] Carr P., Geman H., Madan D. B., Yor M., The fine structure of asset returns: An empirical investigation, Preprint, 2000; http://www.mbs.umd.edu/Finance/ dmadan/abstract.html#CGMY

[11] Carr P., Madan D., “Option valuation using the fast Fourier transform”, J. Comput. Fin., 2 (1999), 61–73

[12] Carr P., Wu E., The finite moment logstable process and option pricing, Working paper, 2000; http://www.math.nyu.edu/research/carrp/papers

[13] Chan T., “Pricing contingent claims on stocks driven by Lévy processes”, Ann. Appl. Probab., 9:2 (1999), 504–528 | DOI | MR | Zbl

[14] Delbaen F., Grandits P., Rheinländer T., Samperi D., Schweizer M., Stricker C., Exponential hedging and entropic penalties, Preprint, 2000 ; http://www.math.ethz.ch/~delbaen | MR

[15] Delbaen F., Schachermayer W., “The variance-optimal martingale measure for continuous processes”, Bernoulli, 2:1 (1996), 81–106 ; Corrections: Ibid 4, 379–380 | DOI | MR | MR

[16] Eberlein E., Keller U., “Hyperbolic distributions in finance”, Bernoulli, 1:3 (1995), 281–299 | DOI | Zbl

[17] Eberlein E., Keller U., Prause K., “New insights into smile, mispricing and Value-at-Risk: the hyperbolic model”, J. Business, 71 (1998), 371–405 | DOI

[18] Fama E. F., “Mandelbrot and the stable Paretian hypothesis”, J. Business, 36 (1963), 420–429 | DOI

[19] Föllmer H., Schweizer M., “Hedging of contingent claims under incomplete information”, Applied stochastic analysis, Stoch. Monogr., 5, eds. M. H. A. Davis, R. J. Elliot, Gordon and Breach, Reading, Mass., 1991, 389–414 | MR

[20] Frittelli M., “The minimal entropy martingale measures and the valuation problem in incomplete markets”, Math. Fin., 10:1 (2000), 39–52 | DOI | MR | Zbl

[21] Fujiwara T., Miyahara Y., “On the minimal entropy martingale measure for geometric Lévy processes”, Discussion Papers in Economics, no. 299, Nagoya City Univ., 2001, 1–21

[22] Hurst S. R., Platen E., Rachev S. T., “Subordinated Markov index models: A comparison”, Fin. Eng. and Japan. Markets, 4 (1997), 97–124 | DOI | Zbl

[23] Hurst S. R., Platen E., Rachev S. T., “Option pricing for a logstable asset price model”, Math. Comput. Modelling, 29:10–12 (1999), 105–119 | DOI | MR | Zbl

[24] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland, Amsterdam, 1989 | MR | Zbl

[25] Jacod J., Shiryaev A. N., Limit theorems for stochastic processes, Springer-Verl., Berlin, 1987 | MR

[26] Madan D., Seneta E., “The variance gamma (vg) model for share market returns”, J. Business, 63 (1990), 511–524 | DOI

[27] Madan D., Carr P., Chang E., “The variance gamma process and option pricing”, Eur. Fin. Rev., 2 (1998), 79–105 | DOI | Zbl

[28] Mandelbrot B., “The variation of certain speculative prices”, J. Business, 36 (1963), 394–419 | DOI

[29] Merton R. C., “Theory of rational option pricing”, Bell J. Econ. and Manag. Sci., 4 (1973), 141–183 | DOI | MR

[30] Merton R. C., “Option pricing when underlying stock returns are discontinuous”, J. Fin. Econ., 3 (1976), 125–144 | DOI | Zbl

[31] Miyahara Y., “Canonical martingale measures of incomplete assets markets”, Probability theory and mathematical statistics, Proc. Seventh Japan–Russia Symp. (Tokyo, 1995), eds. S. Watanabe et al., World Sci., Singapore, 1996, 343–352 | MR | Zbl

[32] Miyahara Y., “Minimal entropy martingale measures of jump type price processes in incomplete assets markets”, Asian-Pacif. Fin. Markets, 6:2 (1999), 97–113 | DOI | Zbl

[33] Miyahara Y., “Geometric Lévy process MEMM pricing model and related estimation problems”, Asian-Pacif. Fin. Markets, 8:1 (2001), 45–60 | DOI | Zbl

[34] Rachev S. T., Mittnik S., Stable Paretian models in finance, Wiley, New York, 2000 | Zbl

[35] Schweizer M., “On the minimal martingale measure and the Föllmer–Schweizer decomposition”, Stoch. Anal. and Appl., 13:5 (1995), 573–599 | DOI | MR | Zbl

[36] Sato K., Lévy processes and infinitely divisible distributions, Cambridge Univ. Press, Cambridge, 1999 | MR

[37] Sato K., Density transformation in Lévy processes, MaPhySto Lect. Notes, 7, Univ. Aarhus, Aarhus, 2000 | Zbl

[38] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, T. 1, 2, Fazis, M., 1998; Shiryaev A. N., Essentials of stochastic finance: Facts, models, theory, Adv. Ser. Statist. Sci. and Appl. Probab., 3, World Sci., Singapore, 1999 | MR | Zbl

[39] Xiao K., Miyahara Y., Misawa T., Computer simulation of [Geometric Lévy Process MEMM] pricing model:, Preprint, 1999; http://www.econ. nagoya-cu.ac.jp/~miyahara

[40] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983 ; Zolotarev V. M., One-dimensional stable distributions, Amer. Math. Soc., Providence, RI, 1986 | MR | MR | Zbl

[41] Zhou C., “Path-dependent option valuation when the underlying path is discontinuous”, J. Fin. Eng., 8:1 (1999), 73–97