On Upper and Lower Prices in Discrete-Time Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 143-148

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple convex ordering argument in the class of equivalent martingale measures is used to determine the upper and lower prices of a convex claim in a general discrete-time model ($N$-period model) with bounded components. Under an approximation condition, the upper price is given by the price in a related Cox–Ross–Rubinstein model. As an application, we discuss a discrete-time stochastic volatility model.
@article{TM_2002_237_a5,
     author = {L. R\"uschendorf},
     title = {On {Upper} and {Lower} {Prices} in {Discrete-Time} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a5/}
}
TY  - JOUR
AU  - L. Rüschendorf
TI  - On Upper and Lower Prices in Discrete-Time Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 143
EP  - 148
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a5/
LA  - en
ID  - TM_2002_237_a5
ER  - 
%0 Journal Article
%A L. Rüschendorf
%T On Upper and Lower Prices in Discrete-Time Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 143-148
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a5/
%G en
%F TM_2002_237_a5
L. Rüschendorf. On Upper and Lower Prices in Discrete-Time Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 143-148. http://geodesic.mathdoc.fr/item/TM_2002_237_a5/