Bounds on Option Prices for Semimartingale Market Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 80-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a methodology for determining the range of option prices of a European option with a convex payoff function in a general semimartingale market model. Prices are obtained as expectations with respect to the set of equivalent martingale measures. Since the set of prices is an interval on the real line, two main questions are considered: (i) how to find upper and lower estimates for the range of prices, and (ii) how to establish the attainability of these estimates. To solve the first question, we introduce a partial ordering in the set of distributions of discounted stock prices (adapted from the theory of statistical experiments), which allows us to find extremal distributions and, accordingly, the upper and lower bounds for the range of option prices. The weak convergence of probability measures is used to answer the second question, whether the bounds obtained at the first step are exact. Exploiting stochastic calculus, we give answers to both questions in terms (the most natural for this problem) of predictable characteristics of the stochastic logarithm of a discounted stock price process. Special attention is given to two examples: a discrete-time and a diffusion-with-jumps market models.
@article{TM_2002_237_a3,
     author = {A. A. Gushchin and \'E. Mordecki},
     title = {Bounds on {Option} {Prices} for {Semimartingale} {Market} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {80--122},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a3/}
}
TY  - JOUR
AU  - A. A. Gushchin
AU  - É. Mordecki
TI  - Bounds on Option Prices for Semimartingale Market Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 80
EP  - 122
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a3/
LA  - ru
ID  - TM_2002_237_a3
ER  - 
%0 Journal Article
%A A. A. Gushchin
%A É. Mordecki
%T Bounds on Option Prices for Semimartingale Market Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 80-122
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a3/
%G ru
%F TM_2002_237_a3
A. A. Gushchin; É. Mordecki. Bounds on Option Prices for Semimartingale Market Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 80-122. http://geodesic.mathdoc.fr/item/TM_2002_237_a3/

[1] Avellaneda M., Levy A., Parás A., “Pricing and hedging derivative securities in markets with uncertain volatilities”, Appl. Math. Fin., 2 (1995), 73–88 | DOI

[2] Bellamy N., Jeanblanc M., “Incompleteness of markets driven by a mixed diffusion”, Fin. and Stoch., 4 (2000), 209–222 | DOI | MR | Zbl

[3] Coquet F., Jacod J., “Convergence des surmartingales. Application aux vraisemblances partielles”, Seminaire de Probabilites, XXIV, Lect. Notes Math., 1426, Springer, Berlin, 1990, 282–299 | MR

[4] Csiszár I., “Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 85–108 | MR | Zbl

[5] Eberlein E., Jacod J., “On the range of options prices”, Fin. and Stoch., 1 (1997), 131–140 | DOI | Zbl

[6] El Karoui N., Jeanblanc-Picqué M., Shreve S. E., “Robustness of the Black and Scholes formula”, Math. Fin., 8:2 (1998), 93–126 | DOI | MR | Zbl

[7] El Karoui N., Quenez M., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control and Optim, 33:1 (1995), 29–66 | DOI | MR | Zbl

[8] Föllmer H., Kabanov Yu. M., “Optional decomposition and Lagrange multipliers”, Fin. and Stoch., 2 (1998), 69–81 | MR | Zbl

[9] Frey R., Sin C. A., “Bounds on European option prices under stochastic volatility”, Math. Fin., 9:2 (1999), 97–116 | DOI | MR | Zbl

[10] Ikeda N., Watanabe S., Stochastic differential equations and diffusion processes, North-Holland, Amsterdam, 1981 ; Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl | MR

[11] Jacod J., Calcul stochastique et problèmes de martingales, Lect. Notes Math., 714, Springer, Berlin, Heidelberg, New York, 1979 | MR | Zbl

[12] Jacod J., “Convergence of filtered statistical models and Hellinger processes”, Stoch. Process. and Appl., 32:1 (1989), 47–68 | DOI | MR | Zbl

[13] Jacod J., Shiryaev A. N., Limit theorems for stochastic processes, Springer, Berlin etc., 1987 ; Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, T. 1, 2, Fizmatlit, M., 1994 | MR

[14] Jakubėnas P., On option pricing in certain incomplete markets, Preprint ; Stokhast. Finans. Mat., Труды МИАН, 237, 2002, 123–142 | MR | Zbl

[15] Jakubowski A., Mémin J., Pages G., “Convergence en loi des suites d'intégrales stochastiques sur l'espace ${\mathbb D}^1$ de Skorokhod”, Probab. Theory and Relat. Fields, 81:1 (1989), 111–137 | DOI | MR | Zbl

[16] Janssen A., Milbrodt H., Strasser H., Infinitely divisible statistical experiments, Lect. Notes Statist., 27, Springer, Berlin, 1985 | MR | Zbl

[17] Kabanov Yu. M., Liptser R. Sh., Shiryaev A. N., “Absolyutnaya nepreryvnost i singulyarnost lokalno absolyutno nepreryvnykh veroyatnostnykh raspredelenii, I, II”, Mat. sb., 107:3 (1978), 364–415 ; 108:1 (1979), 32–61 | MR | Zbl | MR | Zbl

[18] Kramkov D. O., “Convergence of filtered experiments to the experiment generated by a semimartingale”, Proc. Third Finnish–Soviet Symp. on Probability Theory and Mathematical Statistics (Turku, Finland, Aug. 13–16, 1991), Front. Pure and Appl. Probab., 1, eds. H. Niemi, G. Högnas, A. N. Shiryaev, A. V. Melnikov, TVP/VSP, Moscow, Utrecht, 1993, 145–164

[19] Kramkov D. O., “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets”, Probab. Theory and Relat. Fields, 105:4 (1996), 459–479 | DOI | MR | Zbl

[20] Liese F., Vajda I., Convex statistical distances, Teubner, Leipzig, 1987 | MR | Zbl

[21] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov., Nauka, M., 1986 | MR | Zbl

[22] Martini C., “Propagation of convexity by Markovian and martingalian semigroups”, Pot. Anal., 10:2 (1999), 133–175 | DOI | MR | Zbl

[23] Melnikov A. V., Finansovye rynki: stokhasticheskii analiz i raschet proizvodnykh tsennykh bumag, TVP, M., 1997

[24] Mémin J., Théorèmes limite fonctionnels pour les processus de vraisemblance (cadre asymptotiquement non gaussien), Publications de l'Institut de Recherche Mathématique de Rennes, Université de Rennes I Institut de Recherche Mathématique de Rennes, Rennes, 1985 | MR

[25] Rüschendorf L., On upper and lower prices in discrete-time models, Preprint, 2001 ; Труды МИАН, 143–148 | MR | Zbl

[26] Shataev O. V., “O spravedlivoi tsene optsiona evropeiskogo tipa”, UMN, 53:6 (1998), 269–271 | MR

[27] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki. T. 1: Fakty. Modeli, Fazis, M., 1998; Т. 2: Теория

[28] Shiryaev A. N., Spokoiny V. G., Statistical experiments and decisions. Asymptotic theory, Adv. Ser. Statist. Sci. and Appl. Probab., 8, World Sci., Singapore, 2000 | MR | Zbl

[29] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986 | MR

[30] Strasser H., Mathematical theory of statistics, W. de Gruyter, Berlin, 1985 | MR | Zbl

[31] Torgersen E., Comparison of statistical experiments, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl