On Lower and Upper Functions for Square Integrable Martingales
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 290-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a locally square integrable martingale $M = (M_t,\mathcal F_t)_{t\ge 0}$ satisfying $\lim _{t\to\infty }\langle M\rangle _t = +\infty $ ($\mathsf P$-a.s.), with predictably bounded jumps $|\Delta M_s| \le g(\langle M\rangle_s)$ for $s\ge t_0\ge 0$, where $g$ is a nonnegative nondecreasing continuous function and $\langle M \rangle$ is the predictable quadratic characteristic of $M$. For a nonnegative nondecreasing continuous function $\phi$, we give a sufficient condition similar to the Kolmogorov–Petrovskii test saying when $\phi (\langle M\rangle)$ is a lower function for $|M|$. In particular, if $\phi(t)=\sqrt{2t\ln\ln t}$ and $g(t)=O({t^{1/2}}/{ (\ln t)^{1+\delta}})$, we obtain that $\sqrt {2\langle M\rangle \ln\ln \langle M\rangle _t}$ is lower for $|M|$ and $\limsup _{t\to \infty} {|M_t|}/ {\sqrt { 2\langle M\rangle \ln\ln \langle M\rangle _t}}\ge 1$ $\mathsf P$-a.s. If the predictable quadratic characteristic $\langle M\rangle$ is continuous in $t$, then, under some supplementary conditions on jumps of $M$, we prove an analogous result for $\phi (t) = \sqrt {2t\ln\ln t}$ and $g(t)=O (t^{1/2}/(\ln \ln t)^{3/2})$.
@article{TM_2002_237_a18,
     author = {A. N. Shiryaev and E. Valkeila and L. Yu. Vostrikova},
     title = {On {Lower} and {Upper} {Functions} for {Square} {Integrable} {Martingales}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {290--301},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a18/}
}
TY  - JOUR
AU  - A. N. Shiryaev
AU  - E. Valkeila
AU  - L. Yu. Vostrikova
TI  - On Lower and Upper Functions for Square Integrable Martingales
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 290
EP  - 301
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a18/
LA  - en
ID  - TM_2002_237_a18
ER  - 
%0 Journal Article
%A A. N. Shiryaev
%A E. Valkeila
%A L. Yu. Vostrikova
%T On Lower and Upper Functions for Square Integrable Martingales
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 290-301
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a18/
%G en
%F TM_2002_237_a18
A. N. Shiryaev; E. Valkeila; L. Yu. Vostrikova. On Lower and Upper Functions for Square Integrable Martingales. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 290-301. http://geodesic.mathdoc.fr/item/TM_2002_237_a18/

[1] Bertoin J., Levy processes, Cambridge Univ. Press, Cambridge, 1996 | MR

[2] Dellacherie C., Meyer P.-A., Probabilites et potentiel, Ch. V–VIII, Hermann, Paris, 1980 | MR | Zbl

[3] Egorov V. A., “Ob usilennom zakone bolshikh chisel i zakone povtornogo logarifma dlya martingalov i summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 35:4 (1990), 691–703 | MR

[4] Feller W., “The general form of the so-called law of iterated logarithm”, Trans. Amer. Math. Soc., 54 (1943), 373–402 | DOI | MR | Zbl

[5] Fisher E., “On the law of the iterated logarithm for martingales”, Ann. Probab., 20 (1992), 675–680 | DOI | MR | Zbl

[6] Einmahl U., Mason D. M., “Some results on the almost sure behaviour of martingales”, Limit theorems in probability and statistics, Proc. Third Colloq. Pecs (Hung., 1989), Colloq. Math. Soc. J. Bolyai, 57, North-Holland, Amsterdam, 1989, 185–195 | MR

[7] Heyde C. C., “An iterated logarithm result for martingales and its application in estimation theory for autoregressive processes”, J. Appl. Probab., 10 (1973), 146–157 | DOI | MR | Zbl

[8] Hall P., Heyde C. C., Martingale limit theory with applications, Wiley, New York, 1980 | MR | Zbl

[9] Heyde C. C., Scott D. J., “Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments”, Ann. Probab., 1 (1973), 428–436 | DOI | MR | Zbl

[10] Jacod J., Shiryaev A. N., Limit theorems for stochastic processes, Springer, Berlin etc., 1987 | MR

[11] Krylov N. V., “A martingale proof of the Khinchin iterated logarithm law for Wiener process”, Sem. probab., XXIX, Lect. Notes Math., 1613, eds. J. Azema et al., Springer, Berlin, 1995, 25–29 | MR | Zbl

[12] Lepingle D., “Sur le comportement asymptotique des martingales locales”, Sem. probab., XII, Lect. Notes Math., 649, Springer, Berlin, 1978, 148–161 | MR

[13] Liptser R. Sh., Shiryaev A. N., Theory of martingales, Kluwer Acad. Publ., Dordrecht, 1989 | MR | Zbl

[14] Petrov V. V., Limit theorems of probability theory: Sequences of independent random variables, Clarendon Press, Oxford, 1995 | MR | Zbl

[15] Revesz P., Random walk in random and non-random environments, World Sci., Singapore, 1990 | MR | Zbl

[16] Shiryaev A. N., Vostrikova L., “Lower functions and uniform integrability of exponential martingales”, Proc. Workshop on Mathematical Finance (Paris, May 1998), eds. A. Sulem, A. N. Shiryaev, INRIA, Paris, 1998, 169–177

[17] Strassen V., “Der Satz mit dem iterierten Logarithmus”, Tr. Mezhdunar. kongr. matematikov (Moskva, 1966), Mir, M., 1968, 527–532 | MR

[18] Stout W. F. A., “A martingale analogue of Kolmogorov's law of the iterated logarithm”, Ztschr. Wahrscheinlichkeitsth. und Verw. Geb., 15 (1970), 279–290 | DOI | MR | Zbl

[19] Voit M., “A law of the iterated logarithm for martingales”, Bull. Austral. Math. Soc., 43 (1991), 181–185 | DOI | MR | Zbl

[20] Wang J., “The asymptotic behaviour of locally square integrable martingales”, Ann. Probab., 23 (1995), 552–585 | DOI | MR | Zbl

[21] Xu Y., “The law of iterated logarithm for locally square-integrable martingales”, Chin. J. Appl. Probab. and Statist., 6 (1990), 290–301