On Lower and Upper Functions for Square Integrable Martingales
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 290-301

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a locally square integrable martingale $M = (M_t,\mathcal F_t)_{t\ge 0}$ satisfying $\lim _{t\to\infty }\langle M\rangle _t = +\infty $ ($\mathsf P$-a.s.), with predictably bounded jumps $|\Delta M_s| \le g(\langle M\rangle_s)$ for $s\ge t_0\ge 0$, where $g$ is a nonnegative nondecreasing continuous function and $\langle M \rangle$ is the predictable quadratic characteristic of $M$. For a nonnegative nondecreasing continuous function $\phi$, we give a sufficient condition similar to the Kolmogorov–Petrovskii test saying when $\phi (\langle M\rangle)$ is a lower function for $|M|$. In particular, if $\phi(t)=\sqrt{2t\ln\ln t}$ and $g(t)=O({t^{1/2}}/{ (\ln t)^{1+\delta}})$, we obtain that $\sqrt {2\langle M\rangle \ln\ln \langle M\rangle _t}$ is lower for $|M|$ and $\limsup _{t\to \infty} {|M_t|}/ {\sqrt { 2\langle M\rangle \ln\ln \langle M\rangle _t}}\ge 1$ $\mathsf P$-a.s. If the predictable quadratic characteristic $\langle M\rangle$ is continuous in $t$, then, under some supplementary conditions on jumps of $M$, we prove an analogous result for $\phi (t) = \sqrt {2t\ln\ln t}$ and $g(t)=O (t^{1/2}/(\ln \ln t)^{3/2})$.
@article{TM_2002_237_a18,
     author = {A. N. Shiryaev and E. Valkeila and L. Yu. Vostrikova},
     title = {On {Lower} and {Upper} {Functions} for {Square} {Integrable} {Martingales}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {290--301},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a18/}
}
TY  - JOUR
AU  - A. N. Shiryaev
AU  - E. Valkeila
AU  - L. Yu. Vostrikova
TI  - On Lower and Upper Functions for Square Integrable Martingales
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 290
EP  - 301
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a18/
LA  - en
ID  - TM_2002_237_a18
ER  - 
%0 Journal Article
%A A. N. Shiryaev
%A E. Valkeila
%A L. Yu. Vostrikova
%T On Lower and Upper Functions for Square Integrable Martingales
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 290-301
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a18/
%G en
%F TM_2002_237_a18
A. N. Shiryaev; E. Valkeila; L. Yu. Vostrikova. On Lower and Upper Functions for Square Integrable Martingales. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 290-301. http://geodesic.mathdoc.fr/item/TM_2002_237_a18/