Perpetual Options for L\'evy Processes in the Bachelier Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 256-264

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution to the optimal stopping problem $V(x)=\sup_\tau\mathsf Ee^{-\delta\tau}g(x+X_\tau)$ is given, where $X=\{X_t\}_{t\ge 0}$ is a Lévy process, $\tau$ is an arbitrary stopping time, $\delta\ge 0$ is a discount rate, and the reward function $g$ takes the form $g_c(x)=(x-K)^+$ or $g_p(x)=(K-x)^+$. The results interpreted as option prices of perpetual options in Bachelier's model are expressed in terms of the distribution of the overall supremum in the case $g=g_c$ and overall infimum in the case $g=g_p$ of the process $X$ killed at rate $\delta$. Closed-form solutions are obtained under mixed exponentially distributed positive jumps with arbitrary negative jumps for $g_c$ and under arbitrary positive jumps and mixed exponentially distributed negative jumps for $g_p$. In the case $g=g_c$, a prophet inequality comparing the prices of perpetual look-back call options and perpetual call options is obtained.
@article{TM_2002_237_a15,
     author = {\'E. Mordecki},
     title = {Perpetual {Options} for {L\'evy} {Processes} in the {Bachelier} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {256--264},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a15/}
}
TY  - JOUR
AU  - É. Mordecki
TI  - Perpetual Options for L\'evy Processes in the Bachelier Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 256
EP  - 264
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a15/
LA  - en
ID  - TM_2002_237_a15
ER  - 
%0 Journal Article
%A É. Mordecki
%T Perpetual Options for L\'evy Processes in the Bachelier Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 256-264
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a15/
%G en
%F TM_2002_237_a15
É. Mordecki. Perpetual Options for L\'evy Processes in the Bachelier Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 256-264. http://geodesic.mathdoc.fr/item/TM_2002_237_a15/