The Cheapest Superstrategy without Optional Decomposition
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255
Cet article a éte moissonné depuis la source Math-Net.Ru
We follow very closely the Föllmer and Kabanov Lagrange multiplier approach to superstrategies in perfect incomplete markets, except that we provide a very simple proof of the existence of a minimizing multiplier in the case of a European option under the assumption that the discounted process of the underlying is an $L^{2}(P)$-martingale for some probability $P$. Even if it gives the existence of a superstrategy associated with the supremum of the expectations under equivalent martingale measures, our result is much weaker than the optional decomposition theorem.
@article{TM_2002_237_a14,
author = {C. Martini},
title = {The {Cheapest} {Superstrategy} without {Optional} {Decomposition}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {249--255},
year = {2002},
volume = {237},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a14/}
}
C. Martini. The Cheapest Superstrategy without Optional Decomposition. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255. http://geodesic.mathdoc.fr/item/TM_2002_237_a14/
[1] El Karoui N., Quenez M. C., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control and Optim., 33 (1995), 29–66 | DOI | MR | Zbl
[2] Föllmer H., Kabanov Yu., “Optional decompositions and Lagrange multipliers”, Fin. and Stoch., 2 (1998), 69–81 | MR | Zbl
[3] Jacka S., “A martingale representation result and an application to incomplete financial markets”, Math. Fin., 2 (1994), 239–250 | DOI
[4] Kramkov D., “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets”, Probab. Theory and Relat. Fields, 105 (1996), 459–479 | DOI | MR | Zbl
[5] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer-Verl., Berlin, 1994 | MR | Zbl