The Cheapest Superstrategy without Optional Decomposition
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We follow very closely the Föllmer and Kabanov Lagrange multiplier approach to superstrategies in perfect incomplete markets, except that we provide a very simple proof of the existence of a minimizing multiplier in the case of a European option under the assumption that the discounted process of the underlying is an $L^{2}(P)$-martingale for some probability $P$. Even if it gives the existence of a superstrategy associated with the supremum of the expectations under equivalent martingale measures, our result is much weaker than the optional decomposition theorem.
@article{TM_2002_237_a14,
     author = {C. Martini},
     title = {The {Cheapest} {Superstrategy} without {Optional} {Decomposition}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {249--255},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a14/}
}
TY  - JOUR
AU  - C. Martini
TI  - The Cheapest Superstrategy without Optional Decomposition
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 249
EP  - 255
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a14/
LA  - en
ID  - TM_2002_237_a14
ER  - 
%0 Journal Article
%A C. Martini
%T The Cheapest Superstrategy without Optional Decomposition
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 249-255
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a14/
%G en
%F TM_2002_237_a14
C. Martini. The Cheapest Superstrategy without Optional Decomposition. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255. http://geodesic.mathdoc.fr/item/TM_2002_237_a14/

[1] El Karoui N., Quenez M. C., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control and Optim., 33 (1995), 29–66 | DOI | MR | Zbl

[2] Föllmer H., Kabanov Yu., “Optional decompositions and Lagrange multipliers”, Fin. and Stoch., 2 (1998), 69–81 | MR | Zbl

[3] Jacka S., “A martingale representation result and an application to incomplete financial markets”, Math. Fin., 2 (1994), 239–250 | DOI

[4] Kramkov D., “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets”, Probab. Theory and Relat. Fields, 105 (1996), 459–479 | DOI | MR | Zbl

[5] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer-Verl., Berlin, 1994 | MR | Zbl