Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_237_a14, author = {C. Martini}, title = {The {Cheapest} {Superstrategy} without {Optional} {Decomposition}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {249--255}, publisher = {mathdoc}, volume = {237}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a14/} }
C. Martini. The Cheapest Superstrategy without Optional Decomposition. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 249-255. http://geodesic.mathdoc.fr/item/TM_2002_237_a14/
[1] El Karoui N., Quenez M. C., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control and Optim., 33 (1995), 29–66 | DOI | MR | Zbl
[2] Föllmer H., Kabanov Yu., “Optional decompositions and Lagrange multipliers”, Fin. and Stoch., 2 (1998), 69–81 | MR | Zbl
[3] Jacka S., “A martingale representation result and an application to incomplete financial markets”, Math. Fin., 2 (1994), 239–250 | DOI
[4] Kramkov D., “Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets”, Probab. Theory and Relat. Fields, 105 (1996), 459–479 | DOI | MR | Zbl
[5] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer-Verl., Berlin, 1994 | MR | Zbl