The Absence of Arbitrage in a~Mixed Brownian--Fractional Brownian Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 224-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed version of the Black–Merton–Scholes model is considered, i.e. a market with a bond and a stock such that the stock is controlled by a linear combination of a Wiener process and a fractional Brownian motion. It is proved that such a market is arbitrage-free. As an auxiliary result, a representation of a fractional Brownian motion is obtained in terms of the “basic” Gaussian martingale with independent increments.
@article{TM_2002_237_a12,
     author = {Yu. S. Mishura and E. Valkeila},
     title = {The {Absence} of {Arbitrage} in {a~Mixed} {Brownian--Fractional} {Brownian} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--233},
     publisher = {mathdoc},
     volume = {237},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_237_a12/}
}
TY  - JOUR
AU  - Yu. S. Mishura
AU  - E. Valkeila
TI  - The Absence of Arbitrage in a~Mixed Brownian--Fractional Brownian Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 224
EP  - 233
VL  - 237
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_237_a12/
LA  - ru
ID  - TM_2002_237_a12
ER  - 
%0 Journal Article
%A Yu. S. Mishura
%A E. Valkeila
%T The Absence of Arbitrage in a~Mixed Brownian--Fractional Brownian Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 224-233
%V 237
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_237_a12/
%G ru
%F TM_2002_237_a12
Yu. S. Mishura; E. Valkeila. The Absence of Arbitrage in a~Mixed Brownian--Fractional Brownian Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic financial mathematics, Tome 237 (2002), pp. 224-233. http://geodesic.mathdoc.fr/item/TM_2002_237_a12/

[1] Shiryaev A. N., “On arbitrage and replication for fractal models”, Proc. Workshop on Mathematical Finance (Paris, May 1998), INRIA, Paris, 1998, 1–7 | MR

[2] Shiryaev A. N., Essentials of stochastic finance. Facts, models, theory, World Sci., Singapore, 1999 | MR | Zbl

[3] Dasgupta A., Fractional Brownian motion: its properties and applications to stochastic integration, Ph. Thes. Dep. Statistics, Chapel Hill, Univ. North Carolina, 1998, 97 pp. | MR

[4] Molchan G. N., “Gaussovskie protsessy s asimptoticheski stepennym spektrom”, Teoriya veroyatn. i ee primen., 14:3 (1969), 556–559

[5] Norros J., Valkeila E., Virtamo J., “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion”, Bernoulli, 5:4 (1999), 571–587 | DOI | MR | Zbl

[6] Protter Ph., Stochastic integration and differential equations. A new approach, Appl. Math., 21, Springer-Verl., Berlin, 1990, 302 pp. | MR | Zbl

[7] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964, 280 pp. | MR | Zbl

[8] Kuznetsov Yu. A., “Otsutstvie arbitrazha v modeli s fraktalnym brounovskim dvizheniem”, UMN, 54:4 (1999), 175–176 | MR | Zbl