On a Model Analogue of the Helmholtz Resonator in Homogenization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for the Helmholtz equation in $\mathbb R^2$ with the Dirichlet boundary condition on a set of arcs is considered. This set is obtained from the circle by cutting out small-size openings that are arranged periodically and are close to each other. The relation between the size of the openings and the size of the boundary is established under which the boundary value problem considered is an analogue of the Helmholtz resonator with the Dirichlet boundary condition. The asymptotics of the poles with small imaginary parts is constructed for the analytic continuation of the solution to the perturbed boundary value problem.
@article{TM_2002_236_a8,
     author = {R. R. Gadyl'shin},
     title = {On a {Model} {Analogue} of the {Helmholtz} {Resonator} in {Homogenization}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a8/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
TI  - On a Model Analogue of the Helmholtz Resonator in Homogenization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 79
EP  - 86
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a8/
LA  - ru
ID  - TM_2002_236_a8
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%T On a Model Analogue of the Helmholtz Resonator in Homogenization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 79-86
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a8/
%G ru
%F TM_2002_236_a8
R. R. Gadyl'shin. On a Model Analogue of the Helmholtz Resonator in Homogenization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 79-86. http://geodesic.mathdoc.fr/item/TM_2002_236_a8/

[1] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] Gadylshin R. R., “Sistemy rezonatorov”, Izv. RAN. Ser. mat., 64:3 (2000), 51–97 | MR

[3] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[4] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Mat. sb., 184:6 (1993), 99–150 | MR | Zbl

[5] Friedman A., Huang C., Yong J., “Effective permeability of the boundary of a domain”, Commun. Part. Diff. Equat., 20:1,2 (1995), 59–102 | DOI | MR | Zbl

[6] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR