Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a8, author = {R. R. Gadyl'shin}, title = {On a {Model} {Analogue} of the {Helmholtz} {Resonator} in {Homogenization}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {79--86}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a8/} }
R. R. Gadyl'shin. On a Model Analogue of the Helmholtz Resonator in Homogenization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 79-86. http://geodesic.mathdoc.fr/item/TM_2002_236_a8/
[1] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[2] Gadylshin R. R., “Sistemy rezonatorov”, Izv. RAN. Ser. mat., 64:3 (2000), 51–97 | MR
[3] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[4] Chechkin G. A., “Usrednenie kraevykh zadach s singulyarnym vozmuscheniem granichnykh uslovii”, Mat. sb., 184:6 (1993), 99–150 | MR | Zbl
[5] Friedman A., Huang C., Yong J., “Effective permeability of the boundary of a domain”, Commun. Part. Diff. Equat., 20:1,2 (1995), 59–102 | DOI | MR | Zbl
[6] Gadylshin R. R., “Ob asimptotike sobstvennykh znachenii dlya periodicheski zakreplennoi membrany”, Algebra i analiz, 10:1 (1998), 3–19 | MR