Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a7, author = {Ch. Bonatti and V. Z. Grines and V. S. Medvedev and E. Peku}, title = {On {Morse--Smale} {Diffeomorphisms} without {Heteroclinic} {Intersections} on {Three-Manifolds}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {66--78}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a7/} }
TY - JOUR AU - Ch. Bonatti AU - V. Z. Grines AU - V. S. Medvedev AU - E. Peku TI - On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 66 EP - 78 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a7/ LA - ru ID - TM_2002_236_a7 ER -
%0 Journal Article %A Ch. Bonatti %A V. Z. Grines %A V. S. Medvedev %A E. Peku %T On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 66-78 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2002_236_a7/ %G ru %F TM_2002_236_a7
Ch. Bonatti; V. Z. Grines; V. S. Medvedev; E. Peku. On Morse--Smale Diffeomorphisms without Heteroclinic Intersections on Three-Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 66-78. http://geodesic.mathdoc.fr/item/TM_2002_236_a7/
[1] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientno-podobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh, I, II”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gork. gos. un-t, Gorkii, 1984, 22–38 ; 1987, 24–31 ; Sel. Math. Sov., 11:1 (1992), 1–11, 13–17 | MR | Zbl | MR | Zbl | MR
[2] Bezdenezhnykh A. N., Grines V. Z., “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Sel. Math. Sov., 11:1 (1992), 19–23 | MR
[3] Bonatti Ch., Grines V., “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dyn. and Contr. Syst., 6:4 (2000), 579–602 | DOI | MR | Zbl
[4] Bonatti Ch., Langevin R., Diffeomorphismes de Smale des surfaces, Astérisque, 250, Soc. Math. France, Paris, 1998, 235 pp. | MR | Zbl
[5] Bonatti Ch., Grines V., Medvedev V., Pécou E., Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves, Prepubl. Rech. No 214, Univ. Bourgogne, 2000, 8 pp.; Topol. and Appl. (to appear)
[6] Bonatti Ch., Grines V., Pécou E., Bidimensional links and diffeomorphisms on 3-manifolds, Prepubl. Rech. No 225, Univ. Bourgogne, 2000, 21 pp.; Ergod. Th. and Dyn. Syst. (to appear)
[7] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Mat. zametki., 54:3 (1993), 3–17 | MR | Zbl
[8] Grines V. Z., Medvedev V. S., “O topologicheskoi sopryazhennosti trekhmernykh gradientnopodobnykh diffeomorfizmov s trivialno vlozhennym mnozhestvom separatris sedlovykh nepodvizhnykh tochek”, Mat. zametki, 66:6 (1999), 945–948 | MR | Zbl
[9] Epstein D. B. A., “Curves on 2-manifolds and isotopies”, Acta Math., 115 (1966), 83–107 | DOI | MR | Zbl
[10] Langevin R., “Quelques nouveaux invariants des difféomorphismes Morse–Smale d'une surface”, Ann. Inst. Fourier (Grenoble), 43:1 (1993), 265–278 | MR | Zbl
[11] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR
[12] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh sistem Morsa–Smeila s konechnym mnozhestvom osobykh traektorii”, Mat. sb., 181:2 (1990), 212–239