Multiplicity of Zeros of the Components of Solutions to a~System with Regular Singular Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate for the multiplicity of zeros is obtained for a polynomial considered on the trajectory of a solution to a system with regular singular points.
@article{TM_2002_236_a6,
     author = {A. A. Bolibrukh},
     title = {Multiplicity of {Zeros} of the {Components} of {Solutions} to {a~System} with {Regular} {Singular} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {61--65},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a6/}
}
TY  - JOUR
AU  - A. A. Bolibrukh
TI  - Multiplicity of Zeros of the Components of Solutions to a~System with Regular Singular Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 61
EP  - 65
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a6/
LA  - ru
ID  - TM_2002_236_a6
ER  - 
%0 Journal Article
%A A. A. Bolibrukh
%T Multiplicity of Zeros of the Components of Solutions to a~System with Regular Singular Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 61-65
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a6/
%G ru
%F TM_2002_236_a6
A. A. Bolibrukh. Multiplicity of Zeros of the Components of Solutions to a~System with Regular Singular Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 61-65. http://geodesic.mathdoc.fr/item/TM_2002_236_a6/

[1] Bertrand D., Beukers F., “Equations diifférentielles linéaires et majorations de multiplicités”, Ann. Sci. Ecole Norm. Super. Sér. 4, 18 (1985), 181–192 | MR | Zbl

[2] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl

[3] Bolibrukh A. A., “Neravenstvo Fuksa na kompaktnom kelerovom mnogoobrazii”, Dokl. RAN, 380:4 (2001), 448–451 | MR

[4] Bolibruch A. A., Fuchsian inequality on a compact Kähler manifold, Preprint IRMA, Univ. Louis Pasteur, Strasbourg, 2000/02, 11 pp.

[5] Corel E., “Inégalités de Fuchs pour les systèmes différentiels réguliers”, C. R. Acad. Sci. Paris, 328 (1999), 983–986 | MR | Zbl

[6] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR | Zbl

[7] Nesterenko Yu. V., “Otsenki chisla nulei funktsii nekotorykh klassov”, Acta Arithm., 53 (1989), 29–46 | MR | Zbl

[8] Novikov D., Yakovenko S., “Tangential Hilbert problem for perturbations of hyperelliptic hamiltonian systems”, Electr. Res. Announc. AMS, 5 (1999), 55–65 | DOI | MR | Zbl