Harnack Inequalities on Recurrent Metric Fractals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 503-508

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of metric fractal and prove Harnack inequalities for metric fractals whose dimension is less than 2. The result applies, in particular, to finitely ramified fractals like the Sierpinski curves.
@article{TM_2002_236_a49,
     author = {U. Mosco},
     title = {Harnack {Inequalities} on {Recurrent} {Metric} {Fractals}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {503--508},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a49/}
}
TY  - JOUR
AU  - U. Mosco
TI  - Harnack Inequalities on Recurrent Metric Fractals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 503
EP  - 508
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a49/
LA  - en
ID  - TM_2002_236_a49
ER  - 
%0 Journal Article
%A U. Mosco
%T Harnack Inequalities on Recurrent Metric Fractals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 503-508
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a49/
%G en
%F TM_2002_236_a49
U. Mosco. Harnack Inequalities on Recurrent Metric Fractals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 503-508. http://geodesic.mathdoc.fr/item/TM_2002_236_a49/