Harnack Inequalities on Recurrent Metric Fractals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 503-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of metric fractal and prove Harnack inequalities for metric fractals whose dimension is less than 2. The result applies, in particular, to finitely ramified fractals like the Sierpinski curves.
@article{TM_2002_236_a49,
     author = {U. Mosco},
     title = {Harnack {Inequalities} on {Recurrent} {Metric} {Fractals}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {503--508},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a49/}
}
TY  - JOUR
AU  - U. Mosco
TI  - Harnack Inequalities on Recurrent Metric Fractals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 503
EP  - 508
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a49/
LA  - en
ID  - TM_2002_236_a49
ER  - 
%0 Journal Article
%A U. Mosco
%T Harnack Inequalities on Recurrent Metric Fractals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 503-508
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a49/
%G en
%F TM_2002_236_a49
U. Mosco. Harnack Inequalities on Recurrent Metric Fractals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 503-508. http://geodesic.mathdoc.fr/item/TM_2002_236_a49/

[1] Biroli M., Mosco U., “Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Rend. Ser. 9, 6 (1995), 37–44 | MR | Zbl

[2] Capitanelli R., Lagrangians on homogeneous spaces, PhD Thesis, Univ. Roma La Sapienza | Zbl

[3] Capitanelli R., Functional inequalities for measure valued Lagrangians on homogeneous spaces, Preprint, Univ. Roma La Sapienza | MR | Zbl

[4] Fukushima M., Oshima Y., Takeda M., Dirichlet forms and symmetric Markov processes, W. Gruyter, Berlin, 1995 | MR | Zbl

[5] Fukushima M., Shima T., “On a spectral analysis for the Sierpinski gasket”, Pot. Anal., 1:1 (1992), 1–35 | DOI | MR

[6] Kozlov S. M., “Harmonization and homogenization on fractals”, Commun. Math. Phys., 153:2 (1993), 339–357 | DOI | MR | Zbl

[7] Kusuoka S., Diffusion processes in nested fractals, Lect. Notes Math., 1567, Springer-Verl., Berlin, 1993 | MR | Zbl

[8] Malý J., Mosco U., “Remarks on measure-valued Lagrangians on homogeneous spaces”, Ric. Mat. Naples. Suppl., 48 (1999), 217–231 | MR | Zbl

[9] Mosco U., “Composite media and asymptotic Dirichlet forms”, J. Funct. Anal., 123:2 (1994), 368–421 | DOI | MR | Zbl

[10] Mosco U., “Variational metrics on self-similar fractals”, C. R. Acad. Sci. Paris. Sér. 1, 321:6 (1995), 715–720 | MR | Zbl

[11] Mosco U., “Variational fractals”, Ann. Scuola Norm. Super. Pisa. Ser. 4, 25 (1997), 683–712, Spec. Vol. in Memory of E. De Giorgi | MR | Zbl

[12] Mosco U., “Self-similar measures in quasi-metric spaces”, Progr. Nonlin. Diff. Equat. and Appl., 40 (2000), 233–248 | MR | Zbl

[13] Mosco U., “Constructions of energy functionals on certain fractal structures”, J. Convex Anal. (to appear) | MR