Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a47, author = {S. Malek}, title = {Fuchsian {Systems} with {Reducible} {Monodromy} {Are} {Meromorphically}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {481--490}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a47/} }
S. Malek. Fuchsian Systems with Reducible Monodromy Are Meromorphically. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 481-490. http://geodesic.mathdoc.fr/item/TM_2002_236_a47/
[1] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl
[2] Bolibrukh A. A., “On sufficient conditions for the existence of a Fuchsian equation with prescribed monodromy”, J. Dyn. and Contr. Syst., 5:4 (1999), 453–472 | DOI | MR | Zbl
[3] Gladyshev A. I., “On the Riemann–Hilbert problem in dimension 4”, J. Dyn. and Contr. Syst., 2000, no. 2, 219–264 | DOI | MR | Zbl
[4] Malek S., “On reducible monodromies realized by reducible Fuchsian systems”, J. Dyn. and Contr. Syst., 5:4 (1999), 509–521 | DOI | MR
[5] Sabbah C., Déformations isomonodromiques et variétés de Frobenius, Preprint No 2000-05, Ecole Polytech., Paris, 2000 | MR | Zbl