Tauberian Theorems for Cosine Operator Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 474-480
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the investigation of Cesaro-type averaging
convergence for cosine operator functions acting on a Banach space $X$. It
is shown that the behavior of Cesaro-type averaging for polynomially
bounded cosine operator functions is completely defined by the behavior of
the resolvent in a neighborhood of zero.
@article{TM_2002_236_a46,
author = {B. Jefferies and S. I. Piskarev},
title = {Tauberian {Theorems} for {Cosine} {Operator} {Functions}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {474--480},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a46/}
}
B. Jefferies; S. I. Piskarev. Tauberian Theorems for Cosine Operator Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 474-480. http://geodesic.mathdoc.fr/item/TM_2002_236_a46/