Tauberian Theorems for Cosine Operator Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 474-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of Cesaro-type averaging convergence for cosine operator functions acting on a Banach space $X$. It is shown that the behavior of Cesaro-type averaging for polynomially bounded cosine operator functions is completely defined by the behavior of the resolvent in a neighborhood of zero.
@article{TM_2002_236_a46,
     author = {B. Jefferies and S. I. Piskarev},
     title = {Tauberian {Theorems} for {Cosine} {Operator} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {474--480},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a46/}
}
TY  - JOUR
AU  - B. Jefferies
AU  - S. I. Piskarev
TI  - Tauberian Theorems for Cosine Operator Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 474
EP  - 480
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a46/
LA  - en
ID  - TM_2002_236_a46
ER  - 
%0 Journal Article
%A B. Jefferies
%A S. I. Piskarev
%T Tauberian Theorems for Cosine Operator Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 474-480
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a46/
%G en
%F TM_2002_236_a46
B. Jefferies; S. I. Piskarev. Tauberian Theorems for Cosine Operator Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 474-480. http://geodesic.mathdoc.fr/item/TM_2002_236_a46/

[1] Arendt W., El-Mennaoui O., Kéyantuo V., “Local integrated semigroups: evolution with jumps of regularity”, J. Math. Anal. and Appl., 186:2 (1994), 572–595 | DOI | MR | Zbl

[2] deLaubenfels R., Huang Z., Wang S., Wang Y., “Laplace transforms of polynomially bounded vector-valued functions and semigroups of operators”, Israel J. Math., 98 (1997), 189–207 | DOI | MR | Zbl

[3] deLaubenfels R., Piskarev S., “The growth rate of cosine families”, J. Math. Anal. and Appl., 196:2 (1995), 442–451 | DOI | MR

[4] Drozhzhinov Yu. N., Zavyalov B. I., “Kvaziasimptotika obobschennykh funktsii i tauberovy teoremy v kompleksnoi oblasti”, Mat. sb., 102:3 (1977), 372–390 | MR | Zbl

[5] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Izd-vo inostr. lit., M., 1962 | MR

[6] Jefferies B., Piskarev S., “Tauberian theorems for $C_0$-semigroups”, Proc. 4th Intern. Conf. Functional Analysis and Approximation Theory (Maratea, Italy, 2000) (to appear)

[7] Kantorovitz S., Piskarev S., “Mean stability of semigroups”, Taiwanese J. Math. (to appear)

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[9] Melnikova I. V., “Svoistva $d$-polugrupp Lionsa i obobschennaya korrektnost zadachi Koshi”, Funkts. analiz i ego pril., 31:3 (1997), 23–34 | MR | Zbl

[10] Melnikova I. V., “Well-posedness of differential-operator problems. I: The Cauchy problem in spaces of distributions”, J. Math. Sci., 93:1 (1999), 1–21 | DOI | MR | Zbl

[11] Piskarev S., Shaw S.-Y., “On certain operator families related to cosine operator functions”, Taiwanese J. Math., 1:4 (1997), 527–546 | MR | Zbl

[12] Vladimirov V. S., Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR