Tauberian Theorems for Cosine Operator Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 474-480

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the investigation of Cesaro-type averaging convergence for cosine operator functions acting on a Banach space $X$. It is shown that the behavior of Cesaro-type averaging for polynomially bounded cosine operator functions is completely defined by the behavior of the resolvent in a neighborhood of zero.
@article{TM_2002_236_a46,
     author = {B. Jefferies and S. I. Piskarev},
     title = {Tauberian {Theorems} for {Cosine} {Operator} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {474--480},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a46/}
}
TY  - JOUR
AU  - B. Jefferies
AU  - S. I. Piskarev
TI  - Tauberian Theorems for Cosine Operator Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 474
EP  - 480
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a46/
LA  - en
ID  - TM_2002_236_a46
ER  - 
%0 Journal Article
%A B. Jefferies
%A S. I. Piskarev
%T Tauberian Theorems for Cosine Operator Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 474-480
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a46/
%G en
%F TM_2002_236_a46
B. Jefferies; S. I. Piskarev. Tauberian Theorems for Cosine Operator Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 474-480. http://geodesic.mathdoc.fr/item/TM_2002_236_a46/