Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a45, author = {G. Feichtinger and G. Tragler}, title = {Multiple {Equilibria} in an {Optimal} {Control} {Model} {for~Law~Enforcement}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {462--473}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a45/} }
TY - JOUR AU - G. Feichtinger AU - G. Tragler TI - Multiple Equilibria in an Optimal Control Model for~Law~Enforcement JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 462 EP - 473 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a45/ LA - en ID - TM_2002_236_a45 ER -
G. Feichtinger; G. Tragler. Multiple Equilibria in an Optimal Control Model for~Law~Enforcement. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 462-473. http://geodesic.mathdoc.fr/item/TM_2002_236_a45/
[1] Antoci A., Sacco P. L., “A public contracting evolutionary game with corruption”, J. Econ., 61:2 (1995), 89–122 | MR | Zbl
[2] Baveja A., Batta R., Caulkins J. P., Karwan M. H., “Modeling the response of illicit drug markets to local enforcement”, Socio-Econ. Plann. Sci., 27:2 (1993), 73–89 | DOI
[3] Becker G. S., “Crime and punishment: an economic approach”, J. Polit. Econ., 76 (1968), 169–217 | DOI
[4] Behrens D. A., Caulkins J. P., Tragler G., Feichtinger G., “Optimal control of drug epidemics: prevent and treat—but not at the same time?”, Manag. Sci., 46:3 (2000), 333–347 | DOI
[5] Borisov V., Feichtinger G., Kryazhimskii A., “Optimal enforcement on a pure seller's market of illicit drugs”, J. Optim. Th. and Appl., 106 (2000), 1–22 | DOI | MR | Zbl
[6] Caulkins J. P., “Local drug markets' response to focused police enforcement”, Oper. Res., 41:5 (1993), 848–863 | DOI | MR
[7] Clark C. W., Bioeconomic modeling and fisheries management, Wiley-Intersci., New York, 1985 | MR | Zbl
[8] Dawid H., Feichtinger G., “Optimal allocation of drug control efforts: a differential game analysis”, J. Optim. Th. and Appl., 91:2 (1996), 279–297 | DOI | MR | Zbl
[9] Dechert W. D., “Increasing returns to scale and the reverse flexible accelerator”, Econ. Lett., 13 (1983), 69–75 | DOI
[10] Dechert W. D., Nishimura K., “A complete characterization of optimal growth paths in an aggregated model with a non-concave production function”, J. Econ. Theory, 31 (1983), 332–354 | DOI | MR | Zbl
[11] Feichtinger G., Hartl R. F., Optimale Kontrolle ökonomischer Prozesse—Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften, W. de Gruyter, Berlin, 1986 | MR | Zbl
[12] Kleiman M., “Enforcement swamping: a positive-feedback mechanism in rates of illicit activity”, Math. and Comput. Model., 17 (1993), 65–75 | DOI | Zbl
[13] Leung S. F., “How to make the fine fit the corporate crime? An analysis of static and dynamic optimal punishment theories”, J. Publ. Econ., 45:2 (1991), 243–256 | DOI
[14] Skiba A. K., “Optimal growth with a convex-concave production function”, Econometrica, 46 (1978), 527–539 | DOI | MR | Zbl
[15] Tragler G., Caulkins J. P., Feichtinger G., “Optimal dynamic allocation of treatment and enforcement in illicit drug control”, Oper. Res., 49:3 (2001), 352–362 | DOI | MR | Zbl
[16] Wirl F., Feichtinger G., “Instabilities in concave, dynamic, economic optimization”, J. Optim. Th. and Appl., 107 (2000), 277–288 | MR
[17] Wolfram S., Mathematica: a system for doing mathematics by computer, Addison–Wesley Publ., Reading, Mass., 1991