Multiple Equilibria in an Optimal Control Model for~Law~Enforcement
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 462-473.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, Becker's (1968) economic approach to crime and punishment is extended by including intertemporal aspects. We analyze a one-state control model to determine the optimal dynamic trade-off between damages caused by offenders and law enforcement expenditures. By using Pontryagin's maximum principle we obtain interesting insight into the dynamical structure of optimal law enforcement policies. It is found that inherently multiple steady states are generated which can be saddle-points, unstable nodes or focuses and boundary solutions. Moreover, thresholds (so-called Skiba points) between the basins of attraction are discussed. A bifurcation analysis is carried out to classify the various patterns of optimal law enforcement policies.
@article{TM_2002_236_a45,
     author = {G. Feichtinger and G. Tragler},
     title = {Multiple {Equilibria} in an {Optimal} {Control} {Model} {for~Law~Enforcement}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {462--473},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a45/}
}
TY  - JOUR
AU  - G. Feichtinger
AU  - G. Tragler
TI  - Multiple Equilibria in an Optimal Control Model for~Law~Enforcement
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 462
EP  - 473
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a45/
LA  - en
ID  - TM_2002_236_a45
ER  - 
%0 Journal Article
%A G. Feichtinger
%A G. Tragler
%T Multiple Equilibria in an Optimal Control Model for~Law~Enforcement
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 462-473
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a45/
%G en
%F TM_2002_236_a45
G. Feichtinger; G. Tragler. Multiple Equilibria in an Optimal Control Model for~Law~Enforcement. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 462-473. http://geodesic.mathdoc.fr/item/TM_2002_236_a45/

[1] Antoci A., Sacco P. L., “A public contracting evolutionary game with corruption”, J. Econ., 61:2 (1995), 89–122 | MR | Zbl

[2] Baveja A., Batta R., Caulkins J. P., Karwan M. H., “Modeling the response of illicit drug markets to local enforcement”, Socio-Econ. Plann. Sci., 27:2 (1993), 73–89 | DOI

[3] Becker G. S., “Crime and punishment: an economic approach”, J. Polit. Econ., 76 (1968), 169–217 | DOI

[4] Behrens D. A., Caulkins J. P., Tragler G., Feichtinger G., “Optimal control of drug epidemics: prevent and treat—but not at the same time?”, Manag. Sci., 46:3 (2000), 333–347 | DOI

[5] Borisov V., Feichtinger G., Kryazhimskii A., “Optimal enforcement on a pure seller's market of illicit drugs”, J. Optim. Th. and Appl., 106 (2000), 1–22 | DOI | MR | Zbl

[6] Caulkins J. P., “Local drug markets' response to focused police enforcement”, Oper. Res., 41:5 (1993), 848–863 | DOI | MR

[7] Clark C. W., Bioeconomic modeling and fisheries management, Wiley-Intersci., New York, 1985 | MR | Zbl

[8] Dawid H., Feichtinger G., “Optimal allocation of drug control efforts: a differential game analysis”, J. Optim. Th. and Appl., 91:2 (1996), 279–297 | DOI | MR | Zbl

[9] Dechert W. D., “Increasing returns to scale and the reverse flexible accelerator”, Econ. Lett., 13 (1983), 69–75 | DOI

[10] Dechert W. D., Nishimura K., “A complete characterization of optimal growth paths in an aggregated model with a non-concave production function”, J. Econ. Theory, 31 (1983), 332–354 | DOI | MR | Zbl

[11] Feichtinger G., Hartl R. F., Optimale Kontrolle ökonomischer Prozesse—Anwendungen des Maximumprinzips in den Wirtschaftswissenschaften, W. de Gruyter, Berlin, 1986 | MR | Zbl

[12] Kleiman M., “Enforcement swamping: a positive-feedback mechanism in rates of illicit activity”, Math. and Comput. Model., 17 (1993), 65–75 | DOI | Zbl

[13] Leung S. F., “How to make the fine fit the corporate crime? An analysis of static and dynamic optimal punishment theories”, J. Publ. Econ., 45:2 (1991), 243–256 | DOI

[14] Skiba A. K., “Optimal growth with a convex-concave production function”, Econometrica, 46 (1978), 527–539 | DOI | MR | Zbl

[15] Tragler G., Caulkins J. P., Feichtinger G., “Optimal dynamic allocation of treatment and enforcement in illicit drug control”, Oper. Res., 49:3 (2001), 352–362 | DOI | MR | Zbl

[16] Wirl F., Feichtinger G., “Instabilities in concave, dynamic, economic optimization”, J. Optim. Th. and Appl., 107 (2000), 277–288 | MR

[17] Wolfram S., Mathematica: a system for doing mathematics by computer, Addison–Wesley Publ., Reading, Mass., 1991