Invariant Manifolds Revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 428-446
Voir la notice de l'article provenant de la source Math-Net.Ru
The first part of the paper is a survey of results obtained since 1993 and extending the scope of invariant manifold theory; most of them appear here under a better form than in the original papers. In the second part, we state and prove a new invariant theorem, whose proof involves a differential calculus on sequence spaces that are not Banach manifolds.
@article{TM_2002_236_a43,
author = {M. Chaperon},
title = {Invariant {Manifolds} {Revisited}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {428--446},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a43/}
}
M. Chaperon. Invariant Manifolds Revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 428-446. http://geodesic.mathdoc.fr/item/TM_2002_236_a43/