Invariant Manifolds Revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 428-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first part of the paper is a survey of results obtained since 1993 and extending the scope of invariant manifold theory; most of them appear here under a better form than in the original papers. In the second part, we state and prove a new invariant theorem, whose proof involves a differential calculus on sequence spaces that are not Banach manifolds.
@article{TM_2002_236_a43,
     author = {M. Chaperon},
     title = {Invariant {Manifolds} {Revisited}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {428--446},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a43/}
}
TY  - JOUR
AU  - M. Chaperon
TI  - Invariant Manifolds Revisited
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 428
EP  - 446
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a43/
LA  - en
ID  - TM_2002_236_a43
ER  - 
%0 Journal Article
%A M. Chaperon
%T Invariant Manifolds Revisited
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 428-446
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a43/
%G en
%F TM_2002_236_a43
M. Chaperon. Invariant Manifolds Revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 428-446. http://geodesic.mathdoc.fr/item/TM_2002_236_a43/

[1] Abbaci B., Quelques résultats sur les variétés invariantes, Thèse. Univ. Paris 7. En préparation

[2] Chaperon M., Propriétés génériques des germes d'actions différentiables de groupes commutatifs élémentaires, Thèse d'Etat. Univ. Paris 7, 1980 | Zbl

[3] Chaperon M., Géométrie différentielle et singularités de systèmes dynamiques, Astérisque, 138/139, Soc. Math. France, Paris, 1986 | MR | Zbl

[4] Chaperon M., “$C^k$-conjugacy of holomorphic flows near a singularity”, Publ. Math. IHES, 1987, no. 64, 143–183 | MR

[5] Chaperon M., “Variétés stables et formes normales”, C. R. Acad. Sci. Paris. Sér. 1, 317 (1993), 87–92 | MR | Zbl

[6] Chaperon M., Sur la régularité des fonctions implicites, Prépubl. 187, Inst. Math. Jussieu, 1998

[7] Chaperon M., “Invariant manifolds and (semi-)conjugacies” (to appear); A part of this paper was announced in: “Some results on stable manifolds”, C. R. Acad. Sci. Paris. Sér. 1, 333 (2001), 119–124 | MR | Zbl

[8] Chaperon M., Coudray F., “Invariant manifolds, conjugacies and blow-up”, Ergod. Th. and Dyn. Syst., 17 (1997), 783–791 | DOI | MR | Zbl

[9] De La Llave R., Wayne C. E., “On Irwin's proof of the pseudostable manifold theorem”, Math. Ztschr., 219 (1995), 301–321 | DOI | MR | Zbl

[10] Dufour J.-P., “Hyperbolic actions of $\mathbb{R}^p$ on Poisson manifolds”, Symplectic geometry, groupoids, and integrable systems, Math. Sci. Res. Inst. Publ., 20, Springer-Verl., New York, 1991, 137–150 | MR

[11] Fenichel N., “Persistence and smoothness of invariant manifolds for flows”, Indiana Univ. Math. J., 21 (1971), 193–225 | DOI | MR

[12] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lect. Notes Math., 583, Springer-Verl., Berlin, 1977 | MR | Zbl

[13] Irwin M. C., Smooth dynamical systems, Acad. Press, London, 1980 | MR | Zbl

[14] Irwin M. C., “A new proof of the pseudo-stable manifold theorem”, J. London Math. Soc., 21 (1980), 557–566 | DOI | MR | Zbl

[15] Rudin W., Functional analysis, 2nd ed., McGraw Hill, New York, 1991 | MR | Zbl

[16] Sternberg S., “Local contractions and a theorem of Poincaré”, Amer. J. Math., 79 (1957), 809–824 | DOI | MR | Zbl

[17] Sternberg S., “On the structure of local homeomorphisms of euclidean $n$-space, II”, Amer. J. Math., 80 (1958), 623–631 | DOI | MR | Zbl