Projection Singularities of Extremals and Morse Property for Minimum Time
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 399-407

Voir la notice de l'article provenant de la source Math-Net.Ru

For a generic minimum time problem on the plane, we study the projections of the support of extremals (regarded as a two-dimensional object, after normalization) from $\mathbb R^2\times S^1$ to $\mathbb R^2$. Moreover, we study the topology of the reachable set and we give a positive answer to a question of V. I. Arnold: Is the minimum time function, generically, a Morse function in topological sense?
@article{TM_2002_236_a41,
     author = {U. Boscain},
     title = {Projection {Singularities} of {Extremals} and {Morse} {Property} for {Minimum} {Time}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {399--407},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a41/}
}
TY  - JOUR
AU  - U. Boscain
TI  - Projection Singularities of Extremals and Morse Property for Minimum Time
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 399
EP  - 407
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a41/
LA  - en
ID  - TM_2002_236_a41
ER  - 
%0 Journal Article
%A U. Boscain
%T Projection Singularities of Extremals and Morse Property for Minimum Time
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 399-407
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a41/
%G en
%F TM_2002_236_a41
U. Boscain. Projection Singularities of Extremals and Morse Property for Minimum Time. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 399-407. http://geodesic.mathdoc.fr/item/TM_2002_236_a41/