Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a41, author = {U. Boscain}, title = {Projection {Singularities} of {Extremals} and {Morse} {Property} for {Minimum} {Time}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {399--407}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a41/} }
TY - JOUR AU - U. Boscain TI - Projection Singularities of Extremals and Morse Property for Minimum Time JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 399 EP - 407 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a41/ LA - en ID - TM_2002_236_a41 ER -
U. Boscain. Projection Singularities of Extremals and Morse Property for Minimum Time. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 399-407. http://geodesic.mathdoc.fr/item/TM_2002_236_a41/
[1] Agrachev A. A., Pallaschke D., Scholtes S., “On Morse theory for piecewise smooth functions”, J. Dyn. and Contr. Syst., 3:4 (1997), 449–469 | MR | Zbl
[2] Boltianski V., “Sufficient condition for optimality and the justification of the dynamic programming principle”, SIAM J. Contr. and Optim., 4 (1966), 326–361 | DOI | MR
[3] Bonnard B., Kupka I., “Théorie des singularites de l'application entree/sortie et optimalite des singulieres dans le probleme du temps minimal”, Forum Math., 5 (1993), 111–159 | DOI | MR | Zbl
[4] Boscain U., Piccoli B., “Extremal syntheses for generic planar systems”, J. Dyn. and Contr. Syst., 7:2 (2001), 209–258 | DOI | MR | Zbl
[5] Boscain U., Piccoli B., “Morse properties for the minimum time function on 2-D manifolds”, J. Dyn. and Contr. Syst., 7:3 (2001), 385–423 | DOI | MR | Zbl
[6] Boscain U., Piccoli B., “On automaton recognizability of abnormal extremals”, SIAM J. Contr. and Optim. (to appear) | MR
[7] Bressan A., Piccoli B., “Structural stability for time-optimal planar syntheses”, Dyn. Cont. Discr. and Impuls. Syst., 3:3 (1997), 335–371 | MR | Zbl
[8] Bressan A., Piccoli B., “Generic classification of time optimal planar stabilizing feedbacks”, SIAM J. Contr. and Optim., 36:1 (1998), 12–32 | DOI | MR | Zbl
[9] Brunovsky P., “Existence of regular syntheses for general problems”, J. Diff. Equat., 38 (1980), 317–343 | DOI | MR | Zbl
[10] Davydov A. A., Qualitative theory of control systems, Transl. Math. Monogr., 141, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[11] Kiefer M., Schättler H., “Parametrized families of extremals and singularities in solutions to the Hamilton–Jacobi–Bellman equation”, SIAM J. Contr. and Optim., 37:5 (1999), 1346–1371 | DOI | MR | Zbl
[12] Matov V. I., “Topologicheskaya klassifikatsiya rostkov funktsii maksimuma i minimaksa semeistv funktsii obschego polozheniya”, UMN, 37:4 (1982), 167–168 | MR | Zbl
[13] Piccoli B., “Regular time-optimal syntheses for smooth planar systems”, Rend. Sem. Mat. Univ. Padova, 95 (1996), 59–79 | MR | Zbl
[14] Piccoli B., “Classifications of generic singularities for the planar time-optimal synthesis”, SIAM J. Contr. and Optim., 34:6 (1996), 1914–1946 | DOI | MR | Zbl
[15] Pontpyagin L. S., Boltyanskii V. G., Gamkpelidze R. V., Mischenko E. F., Matematicheskaya teopiya optimalnykh ppotsessov, Fizmatgiz, M., 1961
[16] Sussmann H. J., “The structure of time-optimal trajectories for single-input systems in the plane: the $C^\infty$ nonsingular case”, SIAM J. Contr. and Optim., 25:2 (1987), 433–465 | DOI | MR
[17] Sussmann H. J., “Regular synthesis for time-optimal control of single-input real analytic systems in the plane”, SIAM J. Contr. and Optim., 25:5 (1987), 1145–1162 | DOI | MR
[18] Trelat E., “Some properties of the value function and its level sets for affine control systems with quadratic cost”, J. Dyn. and Contr. Syst., 6:4 (2000), 511–541 | DOI | MR | Zbl