Interactions between Homogenization and Phase-Transition Processes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 386-398
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the behavior of nonconvex functionals singularly perturbed by a possibly oscillating inhomogeneous gradient term, in the spirit of the gradient theory of phase transitions. We show that a limit problem giving a sharp interface, as the perturbation vanishes, always exists, but may be inhomogeneous or anisotropic. We specialize this study when the perturbation oscillates periodically, highlighting three types of regimes depending on the speed of oscillations. In the two extreme cases, a separation of scale effect is described.
@article{TM_2002_236_a40,
author = {N. Ansini and A. Braides and V. Chiad\`o Piat},
title = {Interactions between {Homogenization} and {Phase-Transition} {Processes}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {386--398},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a40/}
}
TY - JOUR AU - N. Ansini AU - A. Braides AU - V. Chiadò Piat TI - Interactions between Homogenization and Phase-Transition Processes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 386 EP - 398 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a40/ LA - en ID - TM_2002_236_a40 ER -
%0 Journal Article %A N. Ansini %A A. Braides %A V. Chiadò Piat %T Interactions between Homogenization and Phase-Transition Processes %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 386-398 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2002_236_a40/ %G en %F TM_2002_236_a40
N. Ansini; A. Braides; V. Chiadò Piat. Interactions between Homogenization and Phase-Transition Processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 386-398. http://geodesic.mathdoc.fr/item/TM_2002_236_a40/