Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a40, author = {N. Ansini and A. Braides and V. Chiad\`o Piat}, title = {Interactions between {Homogenization} and {Phase-Transition} {Processes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {386--398}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a40/} }
TY - JOUR AU - N. Ansini AU - A. Braides AU - V. Chiadò Piat TI - Interactions between Homogenization and Phase-Transition Processes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 386 EP - 398 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a40/ LA - en ID - TM_2002_236_a40 ER -
%0 Journal Article %A N. Ansini %A A. Braides %A V. Chiadò Piat %T Interactions between Homogenization and Phase-Transition Processes %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 386-398 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2002_236_a40/ %G en %F TM_2002_236_a40
N. Ansini; A. Braides; V. Chiadò Piat. Interactions between Homogenization and Phase-Transition Processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 386-398. http://geodesic.mathdoc.fr/item/TM_2002_236_a40/
[1] Ambrosio L., Braides A., “Functionals defined on partitions in sets of finite perimeter. I: Integral representation and $\Gamma$-convergence”, J. Math. Pures et Appl., 69 (1990), 285–305 | MR
[2] Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[3] Ansini N., Braides A., Chiadò Piat V., “Gradient theory of phase transitions in composite media”, Submitted to:, Proc. Roy. Soc. Edinburgh A
[4] Bouchitté G., “Convergence et relaxation de fonctionelles du calcul des variations a croissance linéaire. Application a l'homogénéisation en plasticité”, Ann. Fac. Sci. Uni. Toulouse Math., 8 (1986/87), 7–36 | MR | Zbl
[5] Braides A., Approximation of free-discontinuity problems, Lect. Notes Math., 1694, Springer-Verl., Berlin, 1998 | MR | Zbl
[6] Braides A., $\Gamma$-convergence for beginners, Oxford Univ. Press, Oxford (to appear) | MR
[7] Braides A., Chiadò Piat V., “A derivation formula for convex integral functionals defined on $\mathrm{BV}(\Omega)$”, J. Convex Anal., 2 (1995), 69–85 | MR | Zbl
[8] Braides A., Chiadò Piat V., “Integral representation results for functionals defined on $\mathrm{SBV}(\Omega,\mathbb{R}^m)$”, J. Math. Pures et Appl., 75 (1996), 595–626 | MR | Zbl
[9] Braides A., Defranceschi A., Homogenization of multiple integrals, Oxford Univ. Press, Oxford, 1998 | MR | Zbl
[10] De Giorgi E., “Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio a $r$ dimensioni”, Ann. Mat. Pura ed Appl., 36 (1954), 191–213 | DOI | MR | Zbl
[11] De Giorgi E., “Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio a $r$ dimensioni”, Ric. Mat., 4 (1955), 95–113 | MR | Zbl
[12] De Giorgi E., Franzoni T., “Su un tipo di convergenza variazionale”, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Mat. Fis. Natur., 58 (1975), 842–850 | MR | Zbl
[13] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhäuser, Boston, 1993 | MR | Zbl
[14] Federer H., Geometric measure theory, Springer-Verl., Berlin, 1968 | MR
[15] Giusti E., Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, 1984 | MR | Zbl
[16] Gurtin M. E., “Some results and conjectures in the gradient theory of phase transitions”, Metastability and incompletely posed problems, Proc. Workshop. Minneapolis (Minn., 1984/85), IMA Vol. Math. Appl., 3, Springer, New York, 1987, 135–146 | MR
[17] Massari U., Miranda M., Minimal surfaces of codimension one, Math. Stud., 91, North-Holland, Amsterdam, 1984 | MR | Zbl
[18] Modica L., Mortola S., “Un esempio di $\Gamma$-convergenza”, Boll. Un. Mat. Ital. B., 14 (1977), 285–299 | MR | Zbl
[19] Modica L., “The gradient theory of phase transitions and the minimal interface criterion”, Arch. Ration. Mech. and Anal., 98 (1987), 123–142 | MR | Zbl