Interactions between Homogenization and Phase-Transition Processes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 386-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the behavior of nonconvex functionals singularly perturbed by a possibly oscillating inhomogeneous gradient term, in the spirit of the gradient theory of phase transitions. We show that a limit problem giving a sharp interface, as the perturbation vanishes, always exists, but may be inhomogeneous or anisotropic. We specialize this study when the perturbation oscillates periodically, highlighting three types of regimes depending on the speed of oscillations. In the two extreme cases, a separation of scale effect is described.
@article{TM_2002_236_a40,
     author = {N. Ansini and A. Braides and V. Chiad\`o Piat},
     title = {Interactions between {Homogenization} and {Phase-Transition} {Processes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {386--398},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a40/}
}
TY  - JOUR
AU  - N. Ansini
AU  - A. Braides
AU  - V. Chiadò Piat
TI  - Interactions between Homogenization and Phase-Transition Processes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 386
EP  - 398
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a40/
LA  - en
ID  - TM_2002_236_a40
ER  - 
%0 Journal Article
%A N. Ansini
%A A. Braides
%A V. Chiadò Piat
%T Interactions between Homogenization and Phase-Transition Processes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 386-398
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a40/
%G en
%F TM_2002_236_a40
N. Ansini; A. Braides; V. Chiadò Piat. Interactions between Homogenization and Phase-Transition Processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 386-398. http://geodesic.mathdoc.fr/item/TM_2002_236_a40/

[1] Ambrosio L., Braides A., “Functionals defined on partitions in sets of finite perimeter. I: Integral representation and $\Gamma$-convergence”, J. Math. Pures et Appl., 69 (1990), 285–305 | MR

[2] Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[3] Ansini N., Braides A., Chiadò Piat V., “Gradient theory of phase transitions in composite media”, Submitted to:, Proc. Roy. Soc. Edinburgh A

[4] Bouchitté G., “Convergence et relaxation de fonctionelles du calcul des variations a croissance linéaire. Application a l'homogénéisation en plasticité”, Ann. Fac. Sci. Uni. Toulouse Math., 8 (1986/87), 7–36 | MR | Zbl

[5] Braides A., Approximation of free-discontinuity problems, Lect. Notes Math., 1694, Springer-Verl., Berlin, 1998 | MR | Zbl

[6] Braides A., $\Gamma$-convergence for beginners, Oxford Univ. Press, Oxford (to appear) | MR

[7] Braides A., Chiadò Piat V., “A derivation formula for convex integral functionals defined on $\mathrm{BV}(\Omega)$”, J. Convex Anal., 2 (1995), 69–85 | MR | Zbl

[8] Braides A., Chiadò Piat V., “Integral representation results for functionals defined on $\mathrm{SBV}(\Omega,\mathbb{R}^m)$”, J. Math. Pures et Appl., 75 (1996), 595–626 | MR | Zbl

[9] Braides A., Defranceschi A., Homogenization of multiple integrals, Oxford Univ. Press, Oxford, 1998 | MR | Zbl

[10] De Giorgi E., “Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio a $r$ dimensioni”, Ann. Mat. Pura ed Appl., 36 (1954), 191–213 | DOI | MR | Zbl

[11] De Giorgi E., “Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio a $r$ dimensioni”, Ric. Mat., 4 (1955), 95–113 | MR | Zbl

[12] De Giorgi E., Franzoni T., “Su un tipo di convergenza variazionale”, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Mat. Fis. Natur., 58 (1975), 842–850 | MR | Zbl

[13] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhäuser, Boston, 1993 | MR | Zbl

[14] Federer H., Geometric measure theory, Springer-Verl., Berlin, 1968 | MR

[15] Giusti E., Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, 1984 | MR | Zbl

[16] Gurtin M. E., “Some results and conjectures in the gradient theory of phase transitions”, Metastability and incompletely posed problems, Proc. Workshop. Minneapolis (Minn., 1984/85), IMA Vol. Math. Appl., 3, Springer, New York, 1987, 135–146 | MR

[17] Massari U., Miranda M., Minimal surfaces of codimension one, Math. Stud., 91, North-Holland, Amsterdam, 1984 | MR | Zbl

[18] Modica L., Mortola S., “Un esempio di $\Gamma$-convergenza”, Boll. Un. Mat. Ital. B., 14 (1977), 285–299 | MR | Zbl

[19] Modica L., “The gradient theory of phase transitions and the minimal interface criterion”, Arch. Ration. Mech. and Anal., 98 (1987), 123–142 | MR | Zbl