Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimizing a smooth functional on a given convex closed cone under finitely many equality- and inequality-type constraints is considered. For this problem, an extremum principle, i.e. first- and second-order necessary conditions, is obtained that makes sense even at abnormal points. The extremum principle is generalized to the case of minimizing sequences. Sufficient conditions for an extremum are obtained, and their relation to the necessary conditions is examined. The extremum principle is applied to derive an inverse function theorem, which remains valid at abnormal points.
@article{TM_2002_236_a4,
     author = {A. V. Arutyunov},
     title = {Necessary {Extremum} {Conditions} and an {Inverse} {Function} {Theorem} without a~priori {Normality} {Assumptions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a4/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 33
EP  - 44
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a4/
LA  - ru
ID  - TM_2002_236_a4
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 33-44
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a4/
%G ru
%F TM_2002_236_a4
A. V. Arutyunov. Necessary Extremum Conditions and an Inverse Function Theorem without a~priori Normality Assumptions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 33-44. http://geodesic.mathdoc.fr/item/TM_2002_236_a4/

[1] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[2] Arutyunov A. V., Bobylev N. A., Korovin S. K., “One remark to Ekeland`s variational principle”, Comput. Math. Appl., 34:2,4 (1997), 267–271 | DOI | MR | Zbl

[3] Ioffe A. D., Tikhomirov V. M., “Neskolko zamechanii o variatsionnykh printsipakh”, Mat. zametki, 61:2 (1997), 305–311. | MR | Zbl

[4] Arutyunov A. V., “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Mat. sb., 191:1 (2000), 3–26 | MR | Zbl

[5] Bonnas J. F., Cominetti R., Shapiro A., “Second order optimality conditions based on parabolic second order tangent sets”, SIAM J. Optim., 9:2 (1999), 466–492 | DOI | MR

[6] Ben-Tal A., Zowe J., “A unified theory of first and second order conditions for extremum problems in topological vector spaces”, Math. Program. Study, 19 (1982), 39–76 | MR