Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 354-370

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed nonhomogeneous Cauchy–Dirichlet problem is considered for a general quasilinear parabolic equation in the divergence form in the case when the boundary data have an unbounded blow-up at a finite moment $T$. The energy space of this equation is $L_{\infty ,\mathrm {loc}}(0,T;L_{q+1}(\Omega ))\cap L_{p+1,\mathrm {loc}}(0,T;W_{p+1}^m(\Omega ))$, $m\ge 1$, $p>q>0$. The asymptotic behavior of an arbitrary energy solution for $t\to T$ is studied. Sharp (in a sense) integral constraints are established for the blow-up rate of the boundary data which guarantee the localization of the singularity zone of a solution in a certain neighborhood of the boundary of a domain (S-regime) or on the boundary itself (LS-regime).
@article{TM_2002_236_a37,
     author = {A. E. Shishkov},
     title = {Localized {Boundary} {Blow-up} {Regimes} for {General} {Quasilinear} {Divergent} {Parabolic} {Equations} of {Arbitrary} {Order}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {354--370},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a37/}
}
TY  - JOUR
AU  - A. E. Shishkov
TI  - Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 354
EP  - 370
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a37/
LA  - ru
ID  - TM_2002_236_a37
ER  - 
%0 Journal Article
%A A. E. Shishkov
%T Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 354-370
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a37/
%G ru
%F TM_2002_236_a37
A. E. Shishkov. Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 354-370. http://geodesic.mathdoc.fr/item/TM_2002_236_a37/