Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 354-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed nonhomogeneous Cauchy–Dirichlet problem is considered for a general quasilinear parabolic equation in the divergence form in the case when the boundary data have an unbounded blow-up at a finite moment $T$. The energy space of this equation is $L_{\infty ,\mathrm {loc}}(0,T;L_{q+1}(\Omega ))\cap L_{p+1,\mathrm {loc}}(0,T;W_{p+1}^m(\Omega ))$, $m\ge 1$, $p>q>0$. The asymptotic behavior of an arbitrary energy solution for $t\to T$ is studied. Sharp (in a sense) integral constraints are established for the blow-up rate of the boundary data which guarantee the localization of the singularity zone of a solution in a certain neighborhood of the boundary of a domain (S-regime) or on the boundary itself (LS-regime).
@article{TM_2002_236_a37,
     author = {A. E. Shishkov},
     title = {Localized {Boundary} {Blow-up} {Regimes} for {General} {Quasilinear} {Divergent} {Parabolic} {Equations} of {Arbitrary} {Order}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {354--370},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a37/}
}
TY  - JOUR
AU  - A. E. Shishkov
TI  - Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 354
EP  - 370
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a37/
LA  - ru
ID  - TM_2002_236_a37
ER  - 
%0 Journal Article
%A A. E. Shishkov
%T Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 354-370
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a37/
%G ru
%F TM_2002_236_a37
A. E. Shishkov. Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 354-370. http://geodesic.mathdoc.fr/item/TM_2002_236_a37/

[1] Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969 | MR | Zbl

[2] Alt H., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Ztschr., 183 (1983), 311–341 | DOI | MR | Zbl

[3] Bernis F., “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl

[4] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[5] Bernis F., “Qualitative properties for some nonlinear higher order degenerate parabolic equations”, Houston J. Math., 14:3 (1988), 319–352 | MR | Zbl

[6] Samarskii A. A., Sobol I. M., “Primery chislennogo vychisleniya temperaturnykh voln”, ZhVMiMF, 3:4 (1963), 702–719 | MR

[7] Kalashnikov A. S., “O vozniknovenii osobennostei u reshenii uravneniya nestatsionarnoi filtratsii”, ZhVMiMF, 7:2 (1967), 440–444 | Zbl

[8] Oleinik O. A., Kalashnikov A. S., Chzhou Yuilin, “Zadacha Koshi i kraevye zadachi dlya uravneniya tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. mat., 22 (1958), 667–704 | MR | Zbl

[9] Galaktionov V. A., Samarskii A. A., “Metody postroeniya priblizhennykh avtomodelnykh reshenii nelineinykh uravnenii teploprovodnosti”, Mat. sb., 118:3 (1982), 291–322 | MR | Zbl

[10] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “Lokalizatsiya tepla v nelineinykh sredakh”, Dif. uravneniya, 17:10 (1981), 1826–1841 | MR | Zbl

[11] Gilding B. H., Herrero M. A., “Localization and blow-up of thermal waves in nonlinear heat conduction with peaking”, Math. Ann., 282:2 (1988), 223–242 | DOI | MR | Zbl

[12] Cortazar C., Elgueta M., “Localization and boundedness of the solutions of the Neumann problem for a filtration equation”, Nonlin. Anal. Th., Meth. and Appl., 13:1 (1989), 33–41 | DOI | MR | Zbl

[13] Gilding B. H., Gonzerzewicz J., Localization of solutions of exterior domain problems for the porous media equation with radial symmetry, Preprint No 1448, Univ. Twente, 1998, 38 pp. | MR

[14] Shishkov A. E., “Boundary blow-up for energy solutions of general multi-dimensional parabolic equations”, Nonlinear boundary value problems, 8 (1998), 229–237

[15] Shishkov A. E., Schelkov A. G., “Granichnye rezhimy s obostreniem dlya obschikh kvazilineinykh parabolicheskikh uravnenii v mnogomernykh oblastyakh”, Mat. sb., 190:3 (1999), 129–160 | MR | Zbl

[16] Galaktionov V. A., Shishkov A. E., Boundary blow-up localization for higher-order quasilinear parabolic equations: Hamilton–Jacobi asymptotics, Preprint Bath Univ., 2000, 50 pp.

[17] Oleinik O. A., Radkevich E. V., “Metod vvedeniya parametra v izuchenii evolyutsionnykh uravnenii”, UMN, 33:5 (1978), 7–76 | MR | Zbl