Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a37, author = {A. E. Shishkov}, title = {Localized {Boundary} {Blow-up} {Regimes} for {General} {Quasilinear} {Divergent} {Parabolic} {Equations} of {Arbitrary} {Order}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {354--370}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a37/} }
TY - JOUR AU - A. E. Shishkov TI - Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 354 EP - 370 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a37/ LA - ru ID - TM_2002_236_a37 ER -
%0 Journal Article %A A. E. Shishkov %T Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 354-370 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2002_236_a37/ %G ru %F TM_2002_236_a37
A. E. Shishkov. Localized Boundary Blow-up Regimes for General Quasilinear Divergent Parabolic Equations of Arbitrary Order. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 354-370. http://geodesic.mathdoc.fr/item/TM_2002_236_a37/
[1] Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969 | MR | Zbl
[2] Alt H., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Ztschr., 183 (1983), 311–341 | DOI | MR | Zbl
[3] Bernis F., “Existence results for doubly nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279:3 (1988), 373–394 | DOI | MR | Zbl
[4] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[5] Bernis F., “Qualitative properties for some nonlinear higher order degenerate parabolic equations”, Houston J. Math., 14:3 (1988), 319–352 | MR | Zbl
[6] Samarskii A. A., Sobol I. M., “Primery chislennogo vychisleniya temperaturnykh voln”, ZhVMiMF, 3:4 (1963), 702–719 | MR
[7] Kalashnikov A. S., “O vozniknovenii osobennostei u reshenii uravneniya nestatsionarnoi filtratsii”, ZhVMiMF, 7:2 (1967), 440–444 | Zbl
[8] Oleinik O. A., Kalashnikov A. S., Chzhou Yuilin, “Zadacha Koshi i kraevye zadachi dlya uravneniya tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. mat., 22 (1958), 667–704 | MR | Zbl
[9] Galaktionov V. A., Samarskii A. A., “Metody postroeniya priblizhennykh avtomodelnykh reshenii nelineinykh uravnenii teploprovodnosti”, Mat. sb., 118:3 (1982), 291–322 | MR | Zbl
[10] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “Lokalizatsiya tepla v nelineinykh sredakh”, Dif. uravneniya, 17:10 (1981), 1826–1841 | MR | Zbl
[11] Gilding B. H., Herrero M. A., “Localization and blow-up of thermal waves in nonlinear heat conduction with peaking”, Math. Ann., 282:2 (1988), 223–242 | DOI | MR | Zbl
[12] Cortazar C., Elgueta M., “Localization and boundedness of the solutions of the Neumann problem for a filtration equation”, Nonlin. Anal. Th., Meth. and Appl., 13:1 (1989), 33–41 | DOI | MR | Zbl
[13] Gilding B. H., Gonzerzewicz J., Localization of solutions of exterior domain problems for the porous media equation with radial symmetry, Preprint No 1448, Univ. Twente, 1998, 38 pp. | MR
[14] Shishkov A. E., “Boundary blow-up for energy solutions of general multi-dimensional parabolic equations”, Nonlinear boundary value problems, 8 (1998), 229–237
[15] Shishkov A. E., Schelkov A. G., “Granichnye rezhimy s obostreniem dlya obschikh kvazilineinykh parabolicheskikh uravnenii v mnogomernykh oblastyakh”, Mat. sb., 190:3 (1999), 129–160 | MR | Zbl
[16] Galaktionov V. A., Shishkov A. E., Boundary blow-up localization for higher-order quasilinear parabolic equations: Hamilton–Jacobi asymptotics, Preprint Bath Univ., 2000, 50 pp.
[17] Oleinik O. A., Radkevich E. V., “Metod vvedeniya parametra v izuchenii evolyutsionnykh uravnenii”, UMN, 33:5 (1978), 7–76 | MR | Zbl