Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a3, author = {O. D. Anosova}, title = {Invariant {Manifolds} in {Singularly} {Perturbed} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {27--32}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a3/} }
O. D. Anosova. Invariant Manifolds in Singularly Perturbed Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 27-32. http://geodesic.mathdoc.fr/item/TM_2002_236_a3/
[1] Alymkulov K., “O zadache singulyarnogo vozmuscheniya s predelnym tsiklom v podsisteme s bystrym vremenem”, Mat. zametki, 46:5 (1989), 89–91 | MR | Zbl
[2] Anosova O., “On invariant manifolds in singularly perturbed systems”, J. Dyn. and Contr. Syst., 5:4 (1999), 501–507 | DOI | MR | Zbl
[3] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy – 5, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napravleniya, 5, VINITI, M., 1986, 5–218 | MR
[4] Fenichel N., “Persistence and smoothness of invariant manifolds for flows”, Indiana Univ. Math. J., 21:3 (1971), 193–226 | DOI | MR | Zbl
[5] Fenichel N., “Geometric singular perturbation theory for ordinary differential equations”, J. Diff. Equat., 31:1 (1979), 53–98 | DOI | MR | Zbl
[6] Jones C., “Geometric singular perturbation theory”, Dynamical systems. Montecatini Terme, Lect. Notes Math., 1609, Springer, Berlin, 1994, 44–118 | MR
[7] Ilyashenko Yu. S., Li W., Nonlocal bifurcations, Math. Surv. and Monogr., 66, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[8] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973 | MR