A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 285-297

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of statements on the nonexistence of solutions to differential inequalities are proved with the use of the concept (introduced by the author) of nonlinear capacity induced by a differential operator. The results obtained jointly with E. Mitidieri, A. Tesei, and L. Veron are presented.
@article{TM_2002_236_a28,
     author = {S. I. Pokhozhaev},
     title = {A~General {Approach} to the {Theory} of {Nonexistence} of {Global} {Solutions} to {Nonlinear} {Partial} {Differential} {Equations} and {Inequalities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {285--297},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a28/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 285
EP  - 297
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a28/
LA  - ru
ID  - TM_2002_236_a28
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 285-297
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a28/
%G ru
%F TM_2002_236_a28
S. I. Pokhozhaev. A~General Approach to the Theory of Nonexistence of Global Solutions to Nonlinear Partial Differential Equations and Inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 285-297. http://geodesic.mathdoc.fr/item/TM_2002_236_a28/