Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a25, author = {S. A. Nazarov and A. S. Slutskij}, title = {Arbitrary {Plane} {Systems} of {Anisotropic} {Beams}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {234--261}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a25/} }
S. A. Nazarov; A. S. Slutskij. Arbitrary Plane Systems of Anisotropic Beams. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 234-261. http://geodesic.mathdoc.fr/item/TM_2002_236_a25/
[1] Panasenko G. P., “Asimptoticheskie resheniya sistemy teorii uprugosti dlya sterzhnevykh i karkasnykh struktur”, Mat. sb., 183:1 (1992), 89–113
[2] Zhikov V. V., Homogenization of elasticity problems on singular structures, Preprint No 1, Vladimir St. Ped. Univ., Vladimir, 2000, 66 pp.
[3] Panassenko G. P., “Asymptotic analysis of bar systems, 1, 2”, Russ. J. Math. Phys., 2:3 (1994), 325–352 ; 4:1 (1996), 87–116 | MR | MR
[4] Cioranescu D., Saint Jean Paulin J., “Structures très minces en élasticité linéarisée: tours et grillages”, C. R. Acad. Sci. Paris. Sér. 1, 308 (1989), 41–46 | MR | Zbl
[5] Cioranescu D., Saint Jean Paulin J., “Homogenization of reticulated structures”, Appl. Math. Sci., 136, Springer-Verl., New York, 1999, 362 p | MR
[6] Rabotnov Yu. N., Mekhanika deformirovannogo tverdogo tela, Nauka, M., 1988, 712 pp. | Zbl
[7] Bernshtein S. A., “Ocherk tretii: iz istorii rascheta ferm”, Izbr. tr. po stroitelnoi mekhanike, Gosstroiizdat, M., 1961, 450 s
[8] Nazarov S. A., “Neravenstva tipa neravenstv Korna dlya uprugikh multistruktur”, UMN, 50:6 (1995), 197–198 | MR | Zbl
[9] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Meth. Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] Shoikhet B. A., “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, PMM, 37:5 (1973), 913–924 | MR
[11] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestn. SPbGU. Ser. 1, 2:8 (1992), 19–24 | MR
[12] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 383 pp. | MR
[13] Nazarov S. A., “Pogranichnye sloi i usloviya sharnirnogo opiraniya dlya tonkikh plastin”, Zap. nauch. seminarov POMI, 257, 1999, 228–287 | MR | Zbl
[14] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp. | MR
[15] Caillerie D., “Thin elastic and periodic plates”, Math. Meth. Appl. Sci., 2 (1984), 251–270 | DOI | MR
[16] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | MR | Zbl
[17] Motygin O. V., Nazarov S. A., “Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plate, including laminated plates”, IMA J. Appl. Math., 65 (2000), 1–28 | DOI | MR | Zbl
[18] Nazarov S. A., “Asimptoticheskii analiz proizvolno anizotropnoi plastiny peremennoi tolschiny (pologoi obolochki)”, Mat. sb., 191:7 (2000), 129–159 | MR | Zbl
[19] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Probl. mat. analiza, 17 (1997), 101–152 | Zbl