Arbitrary Plane Systems of Anisotropic Beams
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 234-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

A plane problem of anisotropic elasticity theory on an arbitrary junction of thin beams under the action of mass forces is considered. The lateral sides of the beams are free of loads, and a part of junctions are rigidly fixed. The beams and junctions (clamped, slowly moving, and movable) are classified on the basis of asymptotically exact weighted Korn's inequalities. In the presence of movable beams, a one-dimensional model of a system of beams contains algebraic equations and nonlocal transmission conditions together with conventional differential equations and local transmission conditions. On the basis of a solution to a one-dimensional problem, the leading terms of the elastic-field asymptotics are constructed and estimates for asymptotic remainders are derived.
@article{TM_2002_236_a25,
     author = {S. A. Nazarov and A. S. Slutskij},
     title = {Arbitrary {Plane} {Systems} of {Anisotropic} {Beams}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {234--261},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a25/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - A. S. Slutskij
TI  - Arbitrary Plane Systems of Anisotropic Beams
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 234
EP  - 261
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a25/
LA  - ru
ID  - TM_2002_236_a25
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A A. S. Slutskij
%T Arbitrary Plane Systems of Anisotropic Beams
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 234-261
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a25/
%G ru
%F TM_2002_236_a25
S. A. Nazarov; A. S. Slutskij. Arbitrary Plane Systems of Anisotropic Beams. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 234-261. http://geodesic.mathdoc.fr/item/TM_2002_236_a25/

[1] Panasenko G. P., “Asimptoticheskie resheniya sistemy teorii uprugosti dlya sterzhnevykh i karkasnykh struktur”, Mat. sb., 183:1 (1992), 89–113

[2] Zhikov V. V., Homogenization of elasticity problems on singular structures, Preprint No 1, Vladimir St. Ped. Univ., Vladimir, 2000, 66 pp.

[3] Panassenko G. P., “Asymptotic analysis of bar systems, 1, 2”, Russ. J. Math. Phys., 2:3 (1994), 325–352 ; 4:1 (1996), 87–116 | MR | MR

[4] Cioranescu D., Saint Jean Paulin J., “Structures très minces en élasticité linéarisée: tours et grillages”, C. R. Acad. Sci. Paris. Sér. 1, 308 (1989), 41–46 | MR | Zbl

[5] Cioranescu D., Saint Jean Paulin J., “Homogenization of reticulated structures”, Appl. Math. Sci., 136, Springer-Verl., New York, 1999, 362 p | MR

[6] Rabotnov Yu. N., Mekhanika deformirovannogo tverdogo tela, Nauka, M., 1988, 712 pp. | Zbl

[7] Bernshtein S. A., “Ocherk tretii: iz istorii rascheta ferm”, Izbr. tr. po stroitelnoi mekhanike, Gosstroiizdat, M., 1961, 450 s

[8] Nazarov S. A., “Neravenstva tipa neravenstv Korna dlya uprugikh multistruktur”, UMN, 50:6 (1995), 197–198 | MR | Zbl

[9] Nazarov S. A., “Korn's inequalities for junctions of spatial bodies and thin rods”, Math. Meth. Appl. Sci., 20:3 (1997), 219–243 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] Shoikhet B. A., “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, PMM, 37:5 (1973), 913–924 | MR

[11] Nazarov S. A., “Neravenstva Korna, asimptoticheski tochnye dlya tonkikh oblastei”, Vestn. SPbGU. Ser. 1, 2:8 (1992), 19–24 | MR

[12] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 383 pp. | MR

[13] Nazarov S. A., “Pogranichnye sloi i usloviya sharnirnogo opiraniya dlya tonkikh plastin”, Zap. nauch. seminarov POMI, 257, 1999, 228–287 | MR | Zbl

[14] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp. | MR

[15] Caillerie D., “Thin elastic and periodic plates”, Math. Meth. Appl. Sci., 2 (1984), 251–270 | DOI | MR

[16] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | MR | Zbl

[17] Motygin O. V., Nazarov S. A., “Justification of the Kirchhoff hypotheses and error estimation for two-dimensional models of anisotropic and inhomogeneous plate, including laminated plates”, IMA J. Appl. Math., 65 (2000), 1–28 | DOI | MR | Zbl

[18] Nazarov S. A., “Asimptoticheskii analiz proizvolno anizotropnoi plastiny peremennoi tolschiny (pologoi obolochki)”, Mat. sb., 191:7 (2000), 129–159 | MR | Zbl

[19] Nazarov S. A., “Obosnovanie asimptoticheskoi teorii tonkikh sterzhnei. Integralnye i potochechnye otsenki”, Probl. mat. analiza, 17 (1997), 101–152 | Zbl