Suboptimal Regimes in the Fuller Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 226-229
Voir la notice de l'article provenant de la source Math-Net.Ru
In certain optimal control problems, the optimization of a functional requires an infinite number of control switchings on a finite time interval. For such problems, a (suboptimal) control with a finite number of switchings is sought that possesses the following property: If, starting from a certain time moment, the optimal control is replaced by the suboptimal, then the loss in the value of the functional to be minimized is no greater than a given $\varepsilon>0$. The analysis is performed on the basis of the Fuller problem $\int _0^T x^2(t)dt \to \min$, where $\dot x=y$, $\dot y=u$, and $|u|\le 1$; as a suboptimal control, we take the optimal control from the time-optimal problem on the trajectories of the same system.
@article{TM_2002_236_a23,
author = {O. E. Maikova},
title = {Suboptimal {Regimes} in the {Fuller} {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {226--229},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a23/}
}
O. E. Maikova. Suboptimal Regimes in the Fuller Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 226-229. http://geodesic.mathdoc.fr/item/TM_2002_236_a23/