Suboptimal Regimes in the Fuller Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 226-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

In certain optimal control problems, the optimization of a functional requires an infinite number of control switchings on a finite time interval. For such problems, a (suboptimal) control with a finite number of switchings is sought that possesses the following property: If, starting from a certain time moment, the optimal control is replaced by the suboptimal, then the loss in the value of the functional to be minimized is no greater than a given $\varepsilon>0$. The analysis is performed on the basis of the Fuller problem $\int _0^T x^2(t)dt \to \min$, where $\dot x=y$, $\dot y=u$, and $|u|\le 1$; as a suboptimal control, we take the optimal control from the time-optimal problem on the trajectories of the same system.
@article{TM_2002_236_a23,
     author = {O. E. Maikova},
     title = {Suboptimal {Regimes} in the {Fuller} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {226--229},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a23/}
}
TY  - JOUR
AU  - O. E. Maikova
TI  - Suboptimal Regimes in the Fuller Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 226
EP  - 229
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a23/
LA  - ru
ID  - TM_2002_236_a23
ER  - 
%0 Journal Article
%A O. E. Maikova
%T Suboptimal Regimes in the Fuller Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 226-229
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a23/
%G ru
%F TM_2002_236_a23
O. E. Maikova. Suboptimal Regimes in the Fuller Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 226-229. http://geodesic.mathdoc.fr/item/TM_2002_236_a23/

[1] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR

[2] Zelikin M. I., Borisov V. F., “Theory of chattering control”, With applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston etc., 1994 | MR | Zbl

[3] Zelikin M. I., Zelikina L. F., “Uklonenie funktsionala ot optimalnogo znacheniya pri chetteringe eksponentsialno ubyvaet s rostom chisla pereklyuchenii”, Dif. uravneniya, 35:11 (1999), 1468–1472 | MR | Zbl