Suboptimal Regimes in the Fuller Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 226-229
Voir la notice du chapitre de livre
In certain optimal control problems, the optimization of a functional requires an infinite number of control switchings on a finite time interval. For such problems, a (suboptimal) control with a finite number of switchings is sought that possesses the following property: If, starting from a certain time moment, the optimal control is replaced by the suboptimal, then the loss in the value of the functional to be minimized is no greater than a given $\varepsilon>0$. The analysis is performed on the basis of the Fuller problem $\int _0^T x^2(t)dt \to \min$, where $\dot x=y$, $\dot y=u$, and $|u|\le 1$; as a suboptimal control, we take the optimal control from the time-optimal problem on the trajectories of the same system.
@article{TM_2002_236_a23,
author = {O. E. Maikova},
title = {Suboptimal {Regimes} in the {Fuller} {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {226--229},
year = {2002},
volume = {236},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a23/}
}
O. E. Maikova. Suboptimal Regimes in the Fuller Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 226-229. http://geodesic.mathdoc.fr/item/TM_2002_236_a23/
[1] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR
[2] Zelikin M. I., Borisov V. F., “Theory of chattering control”, With applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston etc., 1994 | MR | Zbl
[3] Zelikin M. I., Zelikina L. F., “Uklonenie funktsionala ot optimalnogo znacheniya pri chetteringe eksponentsialno ubyvaet s rostom chisla pereklyuchenii”, Dif. uravneniya, 35:11 (1999), 1468–1472 | MR | Zbl