$\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173
Voir la notice de l'article provenant de la source Math-Net.Ru
Nongenericity of the $\Omega$-stability of skew products of interval maps in the space of $C^1$-smooth skew products of interval maps is proved.
@article{TM_2002_236_a17,
author = {L. S. Efremova},
title = {$\Omega${-Stable} {Skew} {Products} of {Interval} {Maps} {Are} {Not} {Dense} in $T^1(I)$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {167--173},
publisher = {mathdoc},
volume = {236},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a17/}
}
TY - JOUR AU - L. S. Efremova TI - $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 167 EP - 173 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a17/ LA - ru ID - TM_2002_236_a17 ER -
L. S. Efremova. $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173. http://geodesic.mathdoc.fr/item/TM_2002_236_a17/