$\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173

Voir la notice de l'article provenant de la source Math-Net.Ru

Nongenericity of the $\Omega$-stability of skew products of interval maps in the space of $C^1$-smooth skew products of interval maps is proved.
@article{TM_2002_236_a17,
     author = {L. S. Efremova},
     title = {$\Omega${-Stable} {Skew} {Products} of {Interval} {Maps} {Are} {Not} {Dense} in $T^1(I)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {167--173},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a17/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 167
EP  - 173
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a17/
LA  - ru
ID  - TM_2002_236_a17
ER  - 
%0 Journal Article
%A L. S. Efremova
%T $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 167-173
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a17/
%G ru
%F TM_2002_236_a17
L. S. Efremova. $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173. http://geodesic.mathdoc.fr/item/TM_2002_236_a17/