$\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nongenericity of the $\Omega$-stability of skew products of interval maps in the space of $C^1$-smooth skew products of interval maps is proved.
@article{TM_2002_236_a17,
     author = {L. S. Efremova},
     title = {$\Omega${-Stable} {Skew} {Products} of {Interval} {Maps} {Are} {Not} {Dense} in $T^1(I)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {167--173},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a17/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 167
EP  - 173
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a17/
LA  - ru
ID  - TM_2002_236_a17
ER  - 
%0 Journal Article
%A L. S. Efremova
%T $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 167-173
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a17/
%G ru
%F TM_2002_236_a17
L. S. Efremova. $\Omega$-Stable Skew Products of Interval Maps Are Not Dense in $T^1(I)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 167-173. http://geodesic.mathdoc.fr/item/TM_2002_236_a17/

[1] Abraham R., Smale S., “Nongenericity of $\Omega$-stability”, Global analysis (Berkeley, Calif., 1968), Proc. Symp. Pure Math., XIV, Amer. Math. Soc., Providence, R.I., 1970, 5–8 | MR

[2] Newhouse S. E., “Nondensity of Axiom A on $S^2$”, Global analysis (Berkeley, Calif., 1968), Proc. Symp. Pure Math., XIV, Amer. Math. Soc., Providence, R.I., 1970, 191–202 | MR

[3] Przytycki F., “On $\Omega$-stability and structural stability of endomorphisms satisfying Axiom A”, Stud. Math., 60 (1977), 61–77 | MR | Zbl

[4] Ikeda H., “$\Omega$-inverse limit stability theorem”, Trans. Amer. Math. Soc., 348:6 (1996), 2183–2200 | DOI | MR | Zbl

[5] Yakobson M. V., “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Mat. sb., 85:2 (1971), 163–188 | Zbl

[6] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966 | MR

[7] Efremova L. S., “O ponyatii $\Omega$-funktsii kosogo proizvedeniya otobrazhenii intervala”, Dinamicheskie sistemy, Tr. Mezhdunar. konf., posv. 90-letiyu so dnya rozhdeniya L. S. Pontryagina., Itogi nauki i tekhniki. Sovr. matematika i ee prilozh.: Tematich. obzory, 6, VINITI, M., 1999, 129–160 | MR

[8] Efremova L. S., “New set-valued functions in the theory of skew products of interval maps”, Nonlin. Anal. Th. Meth. and Appl., 47 (2001), 5297–5308 | DOI | MR | Zbl

[9] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969 | MR

[10] Efremova L. S., Periodicheskie dvizheniya diskretnykh poludinamicheskikh sistem, Dis. $\dots$ kand. fiz.-mat. nauk, Gorkii, 1981

[11] Coven E. M., Nitecki Z., “Nonwandering sets of the powers of maps of the interval”, Ergod. Th. and Dyn. Syst., 1 (1981), 9–31 | MR | Zbl

[12] Vereikina M. B., Sharkovskii A. N., “Vozvraschaemost v odnomernykh dinamicheskikh sistemakh”, Priblizhennye i kachestvennye issledovaniya differentsialnykh i differentsialno-funktsionalnykh uravnenii, In-t matematiki AN Ukrainy, Kiev, 1983, 35–46 | MR

[13] Block L., “Stability of periodic orbits in the theorem of Šarkovskii”, Proc. Amer. Math. Soc., 81 (1981), 333–336 | DOI | MR | Zbl