On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 153-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary homogeneous elliptic linear differential operator $P$ with constant coefficients, results on the removal of singularities of the solutions to the equation $Pf=0$ in various classes of functions (such as the Hölder–Zygmund classes, Nikol'skii–Besov classes, and function classes defined with the use of local mean approximations by the solutions to the equation under consideration) are presented. The results are stated in terms of Hausdorff measures, Minkowski girths, and special capacities and generalized Hausdorff-type girths introduced in the paper and associated with the Nikol'skii–Besov classes.
@article{TM_2002_236_a15,
     author = {E. P. Dolzhenko and A. V. Pokrovskii},
     title = {On {Nonisolated} {Singular} {Points} of {Solutions} to {Linear} {Elliptic} {Equations} with {Constant} {Coefficients}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {153--157},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a15/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
AU  - A. V. Pokrovskii
TI  - On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 153
EP  - 157
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a15/
LA  - ru
ID  - TM_2002_236_a15
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%A A. V. Pokrovskii
%T On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 153-157
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a15/
%G ru
%F TM_2002_236_a15
E. P. Dolzhenko; A. V. Pokrovskii. On Nonisolated Singular Points of Solutions to Linear Elliptic Equations with Constant Coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 153-157. http://geodesic.mathdoc.fr/item/TM_2002_236_a15/

[1] Dolzhenko E. P., “O “stiranii” osobennostei analiticheskikh funktsii”, UMN, 18:4 (1963), 135–142 | MR | Zbl

[2] Harvey R., Polking J. C., “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1/2 (1970), 39–56 | DOI | MR | Zbl

[3] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[4] Kral J., “Semielliptic singularities”, Casopis Pest. Mat., 109 (1984), 304–322 | MR | Zbl

[5] Ischanov B. Zh., “Nezamknutye osobye mnozhestva dlya slabykh reshenii lineinykh differentsialnykh uravnenii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin. gos. un-t, Kalinin, 1989, 41–49 | MR | Zbl

[6] Ischanov B. Zh., “O predstavlenii reshenii nekotorykh klassov uravnenii v vide potentsialov mer, raspredelennykh na mnozhestve osobennostei”, Dokl. RAN, 358:4 (1998), 455–458 | MR | Zbl

[7] Tarkhanov N. N., Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[8] Pokrovskii A. B., “Lokalnye approksimatsii resheniyami gipoellipticheskikh uravnenii i ustranimye osobennosti”, Dokl. RAN, 367:1 (1999), 15–17 | MR | Zbl

[9] Besov O. V., Ilin V. P., Nikolskii C. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[10] Fedorov V. C., “Sur la representatione des fonctions analitiques au voisinage d'un ensemble de ses points singulier”, Mat. sb., 35 (1928), 237–250

[11] Adzhiev C. C., “Kharakterizatsiya funktsionalnykh prostranstv $B_{p,q}^s(G)$, $L_{p,q}^s(G)$, $W_p^s(G)$ i vlozheniya v $BMO(G)$”, Tr. MIAN, 214, 1997, 7–24 | Zbl

[12] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986

[13] DeVore R. A., Sharpley R. C., Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 293, Amer. Math. Soc., Providence, RI, 1984 | MR