Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 120-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized entropy solutions for a first-order quasilinear partial differential equation are studied. It is shown that the Cauchy problem for this equation is ill-posed in the class of locally bounded functions. The examples of nonexistence and nonuniqueness of solutions are constructed. Moreover, a uniqueness theorem, which holds for solutions integrable with respect to the spatial variable, is proved.
@article{TM_2002_236_a12,
     author = {A. Yu. Goritskii and E. Yu. Panov},
     title = {Locally {Bounded} {Generalized} {Entropy} {Solutions} to the {Cauchy} {Problem} for {a~First-Order} {Quasilinear} {Equation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {120--133},
     publisher = {mathdoc},
     volume = {236},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a12/}
}
TY  - JOUR
AU  - A. Yu. Goritskii
AU  - E. Yu. Panov
TI  - Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 120
EP  - 133
VL  - 236
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_236_a12/
LA  - ru
ID  - TM_2002_236_a12
ER  - 
%0 Journal Article
%A A. Yu. Goritskii
%A E. Yu. Panov
%T Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 120-133
%V 236
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_236_a12/
%G ru
%F TM_2002_236_a12
A. Yu. Goritskii; E. Yu. Panov. Locally Bounded Generalized Entropy Solutions to the Cauchy Problem for a~First-Order Quasilinear Equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 120-133. http://geodesic.mathdoc.fr/item/TM_2002_236_a12/

[1] Benilan F., Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl

[2] Goritskii A. Yu., “Postroenie neogranichennogo entropiinogo resheniya zadachi Koshi so schetnym chislom udarnykh voln”, Vestn. MGU. Matematika. Mekhanika, 1999, no. 2, 3–6 | MR

[3] Goritskii A. Yu., Kruzhkov S. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka, Ucheb. posobie, Izd-vo Tsentra prikl. issled. mekh.-mat. fak. MGU, M., 1999

[4] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl

[5] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka s mnogimi nezavisimymi peremennymi”, Mat. sb., 81:2 (1970), 228–255 | Zbl

[6] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, DAN SSSR, 95:3 (1954), 451–454 | MR | Zbl

[7] Panov E. Yu., “Obobschennye resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka v klassakh lokalno summiruemykh i meroznachnykh funktsii”, Dinamika sploshnoi sredy, 98 (1990), 61–66 | MR | Zbl

[8] Panov E. Yu., Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 1991

[9] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. mat., 60:2 (1996), 107–148 | MR | Zbl

[10] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i superreshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Dif. uravneniya, 37:2 (2001), 249–257 | MR

[11] Barthélemy L., “Probléme d'obstacle pour une équation quasilinéar du premier order”, Sci. Toulouse, 9:2 (1988), 137–159 | MR

[12] Benilan Ph., Equation d'evolution dans un space de Banach quelconque et applications, Th. Doct. Etat. Centre Orsey. Univ. Paris-Sud, 1972

[13] Benilan Ph., Carillo J., Wittbold P., “Renormalized entropy solutions of scalar conservation laws”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 29 (2000), 313–327 | MR | Zbl

[14] Benilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, Nonlin. Diff. Equat. and Appl., 3 (1996), 395–419 | DOI | MR | Zbl

[15] Crandall M. G., “The semigroup approach to first order quasilinear equations in several space variables”, Israel J. Math., 12 (1972), 108–122 | DOI | MR

[16] Goritsky A. Yu., Panov E. Yu., “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russ. J. Math. Phys., 6:4 (1999), 492–494 | MR | Zbl

[17] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara-Sez., 40 (1994–1995), 31–53 | MR