Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_236_a1, author = {A. A. Amosov}, title = {Existence of {Global} {Weak} {Solutions} to the {Equations} of {One-Dimensional} {Nonlinear} {Thermoviscoelasticity} with {Discontinuous} {Data}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {11--19}, publisher = {mathdoc}, volume = {236}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_236_a1/} }
TY - JOUR AU - A. A. Amosov TI - Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 11 EP - 19 VL - 236 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_236_a1/ LA - ru ID - TM_2002_236_a1 ER -
%0 Journal Article %A A. A. Amosov %T Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 11-19 %V 236 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2002_236_a1/ %G ru %F TM_2002_236_a1
A. A. Amosov. Existence of Global Weak Solutions to the Equations of One-Dimensional Nonlinear Thermoviscoelasticity with Discontinuous Data. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 236 (2002), pp. 11-19. http://geodesic.mathdoc.fr/item/TM_2002_236_a1/
[1] Dafermos C. M., “Global smooth solutions to the initial-boundary value problem of the equations of one-dimensional nonlinear thermoviscoelasticity”, SIAM J. Math. Anal., 13 (1982), 397–408 | DOI | MR | Zbl
[2] Dafermos C. M., Hsiao L., “Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity”, Nonlin. Anal. Th., Meth. and Appl., 6:5 (1982), 435–454 | DOI | MR | Zbl
[3] Kim J. U., “Global existence of solutions of the equations of one-dimensional thermoviscoelasticity with initial data in $BV$ and $L^1$”, Ann. Scuola Norm. Super. Piza, 10:3 (1983), 357–427 | MR | Zbl
[4] Zheng S., Shen W., “Global smooth solutions to the Caushy problem of equations of one-dimensional nonlinear thermoviscoelasticity”, J. Part. Diff. Equat., 2 (1989), 26–38 | MR | Zbl
[5] Jiang S., “Global large solutions to initial boundary value problems in one-dimensional nonlinear thermoviscoelasticity”, Quart. Appl. Math., 51:4 (1993), 731–744 | MR | Zbl
[6] Amosov A. A., “Suschestvovanie globalnykh obobschennykh reshenii uravnenii odnomernogo dvizheniya vyazkogo realnogo gaza i odnomernoi nelineinoi termovyazkouprugosti”, Dokl. RAN, 369:3 (1999), 295–298 | MR | Zbl
[7] Amosov A. A., Zlotnik A. A., “Poludiskretnyi metod resheniya uravnenii odnomernogo dvizheniya neodnorodnogo vyazkogo teploprovodnogo gaza s negladkimi dannymi”, Izv. vuzov. Matematika, 1997, no. 4, 3–19 | MR | Zbl
[8] Amosov A. A., “Suschestvovanie globalnykh obobschennykh reshenii uravnenii odnomernogo dvizheniya vyazkogo realnogo gaza s razryvnymi dannymi”, Dif. uravneniya, 36:4 (2000), 486–499 | MR | Zbl
[9] Andrews G., “On the existence of solutions to the equation $u_{tt}=u_{xxt}+\sigma(u_x)_x$”, J. Diff. Equat., 35 (1980), 200–231 | DOI | MR