Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 98-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a natural complex structure on the moduli space of Riemann surfaces with boundary consisting of a finite number of punctures and circles and with marked points on boundary circles. We also give a description of the tangent space to the moduli space in terms of holomorphic objects associated to the corresponding Riemann surface.
@article{TM_2001_235_a6,
     author = {S. M. Ivashkovich and V. V. Shevchishin},
     title = {Holomorphic {Structure} on the {Space} of {Riemann} {Surfaces} with {Marked} {Boundary}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {98--109},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a6/}
}
TY  - JOUR
AU  - S. M. Ivashkovich
AU  - V. V. Shevchishin
TI  - Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 98
EP  - 109
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a6/
LA  - en
ID  - TM_2001_235_a6
ER  - 
%0 Journal Article
%A S. M. Ivashkovich
%A V. V. Shevchishin
%T Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 98-109
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a6/
%G en
%F TM_2001_235_a6
S. M. Ivashkovich; V. V. Shevchishin. Holomorphic Structure on the Space of Riemann Surfaces with Marked Boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 98-109. http://geodesic.mathdoc.fr/item/TM_2001_235_a6/

[1] Abikoff W., The real analytic theory of Teichmüller space, Springer-Verl., Berlin etc., 1980 | MR | Zbl

[2] Dethloff G., Grauert H., “Deformation of compact Riemann surfaces $Y$ of genus $p$ with distinguished points $P_1,\ldots,P_m\in Y$”, Complex geometry and analysis, Intern. Symp. Pisa (Italy, 1988), Lect. Notes Math., 1422, Springer-Verl., Berlin, 1990, 37–44 | MR

[3] Deligne P., Mumford D., “The irreducibility of the space of curves of a given genus”, Publ. Math. IHES, 1969, no. 36, 75–109 | MR | Zbl

[4] Ivashkovich S., Shevchishin V., “Gromov compactness theorem for $J$-complex curves with boundary”, Intern. Math. Res. Not., 22 (2000), 1167–1206 | DOI | MR | Zbl