Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2001_235_a17, author = {E. M. Chirka}, title = {Levi and {Tr\'epreau} {Theorems} for {Continuous} {Graphs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {272--287}, publisher = {mathdoc}, volume = {235}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a17/} }
E. M. Chirka. Levi and Tr\'epreau Theorems for Continuous Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 272-287. http://geodesic.mathdoc.fr/item/TM_2001_235_a17/
[1] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR
[2] Chirka E. M., “Priblizhenie golomorfnymi funktsiyami na gladkikh mnogoobraziyakh v $\mathbb{C}^n$”, Mat. sb., 78 (1969), 101–123 | Zbl
[3] Chirka E. M., “Priblizhenie mnogochlenami na zvezdnykh oblastyakh v $\mathbb{C}^n$”, Mat. zametki, 14 (1973), 55–60 | Zbl
[4] Chirka E. M., “Analiticheskoe predstavlenie $\mathrm{CR}$-funktsii”, Mat. sb., 98 (1975), 591–623 | Zbl
[5] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR
[6] Chirka E. M., “Vvedenie v geometriyu $\mathrm{CR}$-mnogoobrazii”, UMN, 46:1 (1991), 81–164 | MR | Zbl
[7] Chirka E. M., “Teorema Rado dlya $\mathrm{CR}$-otobrazhenii giperpoverkhnostei”, Mat. sb., 185:6 (1994), 125–144 | MR | Zbl
[8] Chirka E. M., “Golomorfnye sloeniya psevdovognutykh grafikov”, Dokl. RAN, 377:4 (2001), 452–454 | MR | Zbl
[9] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1985 | MR
[10] Hörmander L., Notions of convexity, Birkhäuser, Boston etc., 1994 | MR | Zbl
[11] Mañe R., Sad P., Sullivan D., “On the dynamics of rational maps”, Ann. Sci. Ecole Norm. Super, 16 (1983), 193–217 | MR | Zbl
[12] Shcherbina N. V., “On the polynomial hull of a graph”, Indiana Univ. Math. J., 42 (1993), 477–503 | DOI | MR | Zbl
[13] Trépreau J.-M., “Sur le prolongement holomorphe des fonctions C-R défines sur une hypersurface réelle de classe $C^2$ dans $\mathbb{C}^n$”, Invent. Math., 83 (1986), 583–592 | DOI | MR | Zbl