Levi and Tr\'epreau Theorems for Continuous Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 272-287

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma\subset\mathbb C^{n+1}$ be a continuous graph over a convex domain $D\subset\mathbb C^n\times\mathbb R$ and $a\in\Gamma$ be a point such that none of the components of $(D\times\mathbb R)\setminus\Gamma$ is extendable holomorphically to $a$. Then, $a$ is contained in an $n$-dimensional holomorphic graph lying on and closed in $\Gamma$. In particular, if $\Gamma$ divides two domains of holomorphy, then it is foliated by a family of closed holomorphic hypersurfaces–graphs. These results extend and generalize the well-known theorems of E. Levi, J.-M. Trépreau (proved for $C^2$-smooth $\Gamma$), and N. Shcherbina (proved for $n=1$).
@article{TM_2001_235_a17,
     author = {E. M. Chirka},
     title = {Levi and {Tr\'epreau} {Theorems} for {Continuous} {Graphs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {272--287},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a17/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Levi and Tr\'epreau Theorems for Continuous Graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 272
EP  - 287
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a17/
LA  - ru
ID  - TM_2001_235_a17
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Levi and Tr\'epreau Theorems for Continuous Graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 272-287
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a17/
%G ru
%F TM_2001_235_a17
E. M. Chirka. Levi and Tr\'epreau Theorems for Continuous Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 272-287. http://geodesic.mathdoc.fr/item/TM_2001_235_a17/