Approximation and Boundary Properties of Polyanalytic Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 262-271

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a review of some recent results concerning the uniform approximation of functions by polyanalytic functions and polyanalytic polynomials on planar compact sets. We discuss the boundary properties of polyanalytic functions and their relationships with uniform approximation problems. Some problems of approximation by the solutions of homogeneous second-order elliptic equations with constant complex coefficients are also considered.
@article{TM_2001_235_a16,
     author = {K. Yu. Fedorovskiy},
     title = {Approximation and {Boundary} {Properties} of {Polyanalytic} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a16/}
}
TY  - JOUR
AU  - K. Yu. Fedorovskiy
TI  - Approximation and Boundary Properties of Polyanalytic Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 262
EP  - 271
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a16/
LA  - ru
ID  - TM_2001_235_a16
ER  - 
%0 Journal Article
%A K. Yu. Fedorovskiy
%T Approximation and Boundary Properties of Polyanalytic Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 262-271
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a16/
%G ru
%F TM_2001_235_a16
K. Yu. Fedorovskiy. Approximation and Boundary Properties of Polyanalytic Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 262-271. http://geodesic.mathdoc.fr/item/TM_2001_235_a16/