Seiberg--Witten Equations and Complex Abrikosov Strings
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 224-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

An interpretation of Abrikosov strings in the Abelian $(2+1)$-dimensional Higgs model is given in terms of the adiabatic limit. In an analogous way, complex Abrikosov strings are interpreted in terms of the reduction of 4-dimensional Seiberg–Witten equations to pseudoholomorphic curves.
@article{TM_2001_235_a15,
     author = {A. G. Sergeev},
     title = {Seiberg--Witten {Equations} and {Complex} {Abrikosov} {Strings}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--261},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a15/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Seiberg--Witten Equations and Complex Abrikosov Strings
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 224
EP  - 261
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a15/
LA  - ru
ID  - TM_2001_235_a15
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Seiberg--Witten Equations and Complex Abrikosov Strings
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 224-261
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a15/
%G ru
%F TM_2001_235_a15
A. G. Sergeev. Seiberg--Witten Equations and Complex Abrikosov Strings. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 224-261. http://geodesic.mathdoc.fr/item/TM_2001_235_a15/

[1] Donaldson S. K., “The Seiberg–Witten equations and 4-manifold topology”, Bull. Amer. Math. Soc., 33 (1996), 45–70 | DOI | MR | Zbl

[2] Jaffe A., Taubes C. H., Vortices and monopoles, Birkhäuser, Boston, 1980 | MR | Zbl

[3] Kazdan J., Warner F. W., “Curvature functions for compact 2-manifolds”, Ann. Math., 99 (1974), 14–47 | DOI | MR | Zbl

[4] Kronheimer P., Mrowka T. S., “The genus of embedded surfaces in the projective plane”, Math. Res. Lett., 1 (1994), 797–808 | MR | Zbl

[5] Lawson H. B., Michelsohn M.-L., Spin geometry, Princeton Univ. Press, Princeton, 1989 | MR | Zbl

[6] Lifshits E. M., Pitaevskii L. P., Statisticheskaya fizika, Nauka, M., 1978 | MR

[7] Manton N. S., “A remark on the scattering of BPS monopoles”, Phys. Lett. B., 110 (1982), 54–56 | DOI | MR

[8] Pidstrigach V., Tyurin A. N., Localization of Donaldson polynomials along Seiberg–Witten classes, Preprint No 75, Bielefeld Univ., 1995

[9] Salamon D., Spin geometry and Seiberg–Witten invariants, Preprint, Warwick Univ., 1996 | MR

[10] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ Yang–Mills theory”, Nucl. Phys. B., 426 (1994), 19–52 | DOI | MR | Zbl

[11] Seiberg N., Witten E., “Monopole, duality, and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B., 431 (1994), 484–550 | DOI | MR | Zbl

[12] Sergeev A. G., Chechin S. V., “O rasseyanii medlenno dvizhuschikhsya vikhrei v abelevoi (2+1)-mernoi modeli Khiggsa”, TMF, 85 (1990), 397–411 | MR

[13] Stuart D., “Dynamics of Abelian Higgs vortices in the near Bogomolny regime”, Commun. Math. Phys., 159 (1994), 51–91 | DOI | MR | Zbl

[14] Stuart D., “Periodic solutions of the Abelian Higgs model and rigid rotation of vortices”, Geom. Funct. Anal., 9 (1999), 568–595 | DOI | MR | Zbl

[15] Taubes C. H., “The Seiberg–Witten invariants and symplectic forms”, Math. Res. Lett., 1 (1994), 809–822 | MR | Zbl

[16] Taubes C. H., “$\mathrm{SW}\Rightarrow\mathrm{Gr}$: From the Seiberg–Witten equations to pseudo-holomorphic curves”, J. Amer. Math. Soc., 9 (1996), 845–918 | DOI | MR | Zbl

[17] Taubes C. H., “$\mathrm{Gr}\Rightarrow\mathrm{SW}$: From pseudo-holomorphic curves to Seiberg–Witten solutions”, J. Diff. Geom., 51 (1999), 203–334 | MR | Zbl

[18] Taubes C. H., $\mathrm{Gr}=\mathrm{SW}$: Counting curves and connections, Preprint, Harvard Univ., 1996 | MR

[19] Witten E., “Monopoles and 4-manifolds”, Math. Res. Lett., 1 (1994), 769–796 | MR | Zbl

[20] Morgan J. W., Szabó Z., Taubes C. H., “A product formula for the Seiberg–Witten invariants and the generalized Thom conjecture”, J. Diff. Geom., 44:4 (1996), 706–788 | MR | Zbl