Counterexamples to the ``Jacobian Conjecture at Infinity''
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 181-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

Earlier, the author constructed an example of an open complex surface $U$, a smooth compact rational curve $L\subset U$ with the self-intersection index $+1$, and a holomorphic immersion $f:U\setminus L\to\mathbb C^2$ that is meromorphic on $U$ but is not an embedding (if $U\subset \mathbb C\mathrm P^2$, then such an immersion can be extended to a counterexample to the Jacobian conjecture). In this paper, an analogous example is constructed with the property that $f|_{\partial U}$ is an immersion of a 3-sphere in $\mathbb C^2$ which is regularly homotopic to an embedding. The map $f$ cannot be extended to a counterexample to the Jacobian conjecture, which is proved by the analysis of the coefficients of polynomials.
@article{TM_2001_235_a13,
     author = {S. Yu. Orevkov},
     title = {Counterexamples to the {``Jacobian} {Conjecture} at {Infinity''}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--210},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a13/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
TI  - Counterexamples to the ``Jacobian Conjecture at Infinity''
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 181
EP  - 210
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a13/
LA  - ru
ID  - TM_2001_235_a13
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%T Counterexamples to the ``Jacobian Conjecture at Infinity''
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 181-210
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a13/
%G ru
%F TM_2001_235_a13
S. Yu. Orevkov. Counterexamples to the ``Jacobian Conjecture at Infinity''. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 181-210. http://geodesic.mathdoc.fr/item/TM_2001_235_a13/

[1] Abhyankar S. S., Moh T.-T., “Generalized Tschirnhausen transformation and approximation roots, I”, J. Reine und Angew. Math., 260 (1973), 47–83 | MR | Zbl

[2] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer-Verl., Berlin etc., 1984 | MR | Zbl

[3] Bass H., Connell E. H., Wright D., “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc. Ser. 2, 7 (1982), 287–330 | DOI | MR | Zbl

[4] Domrina A. V., “O chetyrekhlistnykh polinomialnykh otobrazheniyakh $\mathbb{C}^2$. II: Obschii sluchai”, Izv. RAN. Ser. mat., 64:1 (2000), 3–36 | MR | Zbl

[5] Domrina A. V., Orevkov S. Yu., “O chetyrekhlistnykh polinomialnykh otobrazheniyakh $\mathbb{C}^2$. I: Sluchai neprivodimoi krivoi vetvleniya”, Mat. zametki, 64:6 (1998), 847–862 | MR | Zbl

[6] Eisenbud D., Neumann W. D., Three dimentional link theory and invariants of plane curve singularities, Ann. Math. Stud., 110, Princeton Univ. Press, Princeton, 1985 | MR | Zbl

[7] Eliashberg Y., “Filling by holomorphic discs and its application”, Geometry of low-dimentional manifolds, 2 (Durham, 1989), London Math. Soc. Lect. Notes Ser., 151, Cambridge Univ. Press, Cambridge, 1990, 45–67 | MR

[8] Francis G. K., “Titus' homotopies of normal curves”, Proc. Amer. Math. Soc., 30 (1971), 511–518 | DOI | MR | Zbl

[9] Heitmann R. C., “On the Jacobian conjecture”, J. Pure and Appl. Algebra, 64 (1990), 35–72 | DOI | MR | Zbl

[10] Moh T.-T., “On the Jacobian conjecture and the configuration of roots”, J. Reine und Angew. Math., 340 (1983), 140–212 | MR | Zbl

[11] Neumann W. D., “Complex algebraic plane curves via their links at infinity”, Invent. Math., 89 (1989), 445–489 | DOI | MR

[12] Orevkov S. Yu., “O trekhlistnykh polinomialnykh otobrazheniyakh $\mathbb{C}^2$”, Izv. AN SSSR. Ser. mat., 50:6 (1986), 1231–1240 | MR | Zbl

[13] Orevkov S. Yu., “Odin primer v svyazi s gipotezoi o yakobiane”, Mat. zametki, 47:1 (1990), 127–136 ; “Письмо в редакцию”, Мат. заметки, 49:6 (1991), 148 | MR | MR | Zbl

[14] Orevkov S. Yu., “Kogda tsepochka razdutii zadaet avtomorfizm $\mathbb{C}^2$”, Mat. zametki, 67:4 (2000), 638–640 | MR | Zbl

[15] Poenaru V., “Extension des immersions en codimension 1 (d'après Samuel Blank)”, Sém. Bourbaki. 20e ann., no. 342, 1967/68, 1–33

[16] Smale S., “The classification of immersions of spheres in Euclidean spaces”, Ann. Math. Ser. 2, 69 (1959), 327–344 | DOI | MR | Zbl

[17] Vitushkin A. G., “On polynomial transformations of $\mathbb{C}^n$”, Manifolds, Proc. Conf. (Tokyo, 1973), Tokyo Univ. Press, Tokyo, 1975, 415–417 | MR | Zbl