Saga of the Painlevé Problem and Analytic Capacity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 157-164
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This note consists of two sections. The first one gives an account of an intriguing and dramatic story of solving (not completely) the so-called Painlevé problem that consists in describing the set of removable singularities for bounded holomorphic functions. In view of this, I indulge in proposing some reminiscences about bygone events. The second section gives yet another elementary proof of the Denjoy conjecture, which is a part of the Painlevé problem.
@article{TM_2001_235_a10,
     author = {M. S. Mel'nikov},
     title = {Saga of the {Painlev\'e} {Problem} and {Analytic} {Capacity}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {157--164},
     year = {2001},
     volume = {235},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a10/}
}
TY  - JOUR
AU  - M. S. Mel'nikov
TI  - Saga of the Painlevé Problem and Analytic Capacity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 157
EP  - 164
VL  - 235
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a10/
LA  - ru
ID  - TM_2001_235_a10
ER  - 
%0 Journal Article
%A M. S. Mel'nikov
%T Saga of the Painlevé Problem and Analytic Capacity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 157-164
%V 235
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a10/
%G ru
%F TM_2001_235_a10
M. S. Mel'nikov. Saga of the Painlevé Problem and Analytic Capacity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 157-164. http://geodesic.mathdoc.fr/item/TM_2001_235_a10/

[1] Painlevé P., “Sur les lignes singulières des fonctions analytiques”, Ann. Fac. Sci. Toulouse, 2 (1888) | MR | Zbl

[2] Denjoy A., “Sur les fonctions analytiques uniformes á singularities discontinues”, C. R. Acad. Sci. Paris, 149 (1909), 258–260

[3] Ahlfors L. V., Beurling A., “Conformal invariants and function theoretic null sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[4] Ivanov L. D., “O gipoteze Danzhua”, UMN, 18:4 (1963), 147–149 | MR | Zbl

[5] Davie A. M., “Analytic capacity and approximation problems”, Trans. Amer. Math. Soc., 171 (1972), 409–444 | DOI | MR | Zbl

[6] Besicovitch A., “On the fundamental geometric properties of linearly mesurable plane sets of points, I, II”, Math. Ann., 98 (1927), 422–464 ; 115 (1938), 296–329 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Besicovitch A., “On the fundamental geometric properties of linearly mesurable plane sets of points, III”, Math. Ann., 116 (1939), 349–357 | DOI | MR | Zbl

[8] Ahlfors L. V., “Bounded analytic functions”, Duke Math. J., 14 (1947), 1–11 | DOI | MR | Zbl

[9] Garabedian P. R., “Schwarz's lemma and the Szegö kernel function”, Trans. Amer. Math. Soc., 67 (1949), 1–35 | DOI | MR | Zbl

[10] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22 (1967), 141–199

[11] Vitushkin A. G., “Primer mnozhestva polozhitelnoi dliny, no nulevoi analiticheskoi emkosti”, DAN SSSR, 127 (1959), 246–249 | Zbl

[12] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[13] Garnett J., “Positive length but zero analytic capacity”, Proc. Amer. Math. Soc., 24 (1970), 696–699 | DOI | MR | Zbl

[14] Calderon A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74 (1977), 1324–1327 | DOI | MR | Zbl

[15] Khavin V. P., “Granichnye svoistva integralov tipa Koshi i garmonicheski sopryazhennykh funktsii v oblastyakh so spryamlyaemoi granitsei”, Mat. sb., 68 (1965), 499–517 | Zbl

[16] Khavin V. P., Khavinson S. Ya., “Nekotorye otsenki analiticheskoi emkosti”, DAN SSSR, 138 (1961), 789–792 | Zbl

[17] Mattila P., “Smooth maps, null-sets for integral geometric measure and analytic capacity”, Ann. Math., 123 (1986), 303–309 | DOI | MR | Zbl

[18] Jones P. W., Murai T., “Positive analytic capacity but zero Buffon needle probability”, Pasif. J. Math., 133 (1988), 99–114 | MR | Zbl

[19] Melnikov M. S., “Analiticheskaya emkost: diskretnyi podkhod i krivizna mery”, Mat. sb., 186:6 (1995), 57–76 | MR

[20] Melnikov M. S., Verdera J., “A geometric proof of $L^2$ boundedness of the Cauchy integral on Lipschitz curves”, Intern. Math. Res. Not., 7 (1995), 325–331 | DOI | MR | Zbl

[21] Mattila P., Melnikov M. S., Verdera J., “The Cauchy integral, analytic capacity and uniform rectifiability”, Ann. Math., 144 (1996), 127–136 | DOI | MR | Zbl

[22] Christ M., “$T(b)$ theorem with remarks on analytic capacity and the Cauchy integral”, Colloq. Math., 60/61 (1990), 601–628 | MR | Zbl

[23] David G., Semmes S., Singular integrals and rectifiable sets in $\mathbb{R}^n$, Astérisque, 193, Acad. Publ., Paris, 1991 | MR

[24] Léger J.-C., “Menger curvature and rectifiability”, Ann. Math., 149 (1999), 831–869 | DOI | MR | Zbl

[25] David G., Mattila P., “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamer, 16 (2000), 137–215 | MR | Zbl

[26] David G., “Unrectifiable $1$-sets have vanishing analytic capacity”, Rev. Mat. Iberoamer, 14 (1998), 369–479 | MR | Zbl

[27] Nazarov F., Treil S., Volberg A., Pulling ourselves by the hair (the proof of the Vitushkin conjecture), Preprint, Michigan State Univ., 2000

[28] Tolsa X., “$L^2$-boundedness of the Cauchy integral operators for continuous measures”, Duke Math. J., 98:2 (1999), 269–304 | DOI | MR | Zbl