The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 153-207

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mathematical model of an RCLG oscillator represented by a system of linear telegraph equations with a nonlinearity in the boundary condition, the buffer phenomenon is established; i.e. the existence of an arbitrary finite number of stable cycles is proved under a suitable choice of parameters. The results of an experimental analysis of this phenomenon are also presented.
@article{TM_2001_233_a5,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The {Bufferness} {Phenomenon} in the \textit {{RCLG}} {Seft-excited} {Oscillator:} {Theoretical} {Analysis} and {Experiment} {Results}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {153--207},
     publisher = {mathdoc},
     volume = {233},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_233_a5/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 153
EP  - 207
VL  - 233
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_233_a5/
LA  - ru
ID  - TM_2001_233_a5
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 153-207
%V 233
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_233_a5/
%G ru
%F TM_2001_233_a5
A. Yu. Kolesov; N. Kh. Rozov. The Bufferness Phenomenon in the \textit {RCLG} Seft-excited Oscillator: Theoretical Analysis and Experiment Results. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 153-207. http://geodesic.mathdoc.fr/item/TM_2001_233_a5/