Synthesis of Optimal Trajectories That Defines the Reeb Foliation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 89-94
Cet article a éte moissonné depuis la source Math-Net.Ru
Two analogues of Fuller's problems with multidimensional control are considered. These problems play an important role in the framework of program of optimal chattering synthesis design. The optimal synthesis for these problems has an interesting topological structure described by variants of the Reeb foliation.
@article{TM_2001_233_a2,
author = {M. I. Zelikin},
title = {Synthesis of {Optimal} {Trajectories} {That} {Defines} the {Reeb} {Foliation}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {89--94},
year = {2001},
volume = {233},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_233_a2/}
}
M. I. Zelikin. Synthesis of Optimal Trajectories That Defines the Reeb Foliation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 89-94. http://geodesic.mathdoc.fr/item/TM_2001_233_a2/
[1] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. MIAN, 197, 1991, 85–166 | MR
[2] Zelikin M. I., Borisov V. F., Theory of chattering control: With applications to astronautics, robotics, economics, and engineering, Syst. Contr.: Found. Appl., Birkhäuser, Boston etc., 1994 | MR | Zbl