More on a~Boundary Value Problem with Polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 286-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximation in Sobolev classes is obtained to the solution of a general boundary value problem for a self-adjoint elliptic operator of order $2l$ with constant coefficients on an $n$-dimensional ellipsoid. The right-hand side of the equation is a function from the class $W_2^r$, and the boundary conditions are homogeneous. The approximation is obtained by algebraic polynomials that are solutions to the boundary value problem for the same differential operator.
@article{TM_2001_232_a22,
     author = {S. M. Nikol'skii},
     title = {More on {a~Boundary} {Value} {Problem} with {Polynomials}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {286--288},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a22/}
}
TY  - JOUR
AU  - S. M. Nikol'skii
TI  - More on a~Boundary Value Problem with Polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 286
EP  - 288
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a22/
LA  - ru
ID  - TM_2001_232_a22
ER  - 
%0 Journal Article
%A S. M. Nikol'skii
%T More on a~Boundary Value Problem with Polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 286-288
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a22/
%G ru
%F TM_2001_232_a22
S. M. Nikol'skii. More on a~Boundary Value Problem with Polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 286-288. http://geodesic.mathdoc.fr/item/TM_2001_232_a22/

[1] Nikolskii S. M., “Kraevaya zadacha dlya mnogochlenov”, Tr. MIAN, 227, 1999, 223–236 | MR

[2] Nikolskii S. M., “Sluchai, kogda reshenie kraevoi zadachi — mnogochlen”, Dokl. RAN, 366:6 (1999), 746–748 | MR

[3] Nikolskii S. M., “Obobschenie osnovnoi teoremy v teorii sfericheskikh funktsii”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Izd-vo AFTs, M., 1999, 131–135 | MR

[4] Nikolskii S. M., “Variatsionnaya problema dlya uravneniya ellipticheskogo tipa s vyrozhdeniem na granitse”, Tr. MIAN, 150, 1979, 212–238 | MR

[5] Nikolskii S. M., “Esche o priblizhenii tselymi funktsiyami eksponentsialnogo tipa i mnogochlenami”, Tr. MIAN, 204, 1993, 201–225

[6] Lizorkin P. I., Nikolskii S. M., “Koertsitivnye svoistva ellipticheskikh uravnenii s vyrozhdeniem. Variatsionnyi metod”, Tr. MIAN, 157, 1981, 90–118 | MR | Zbl

[7] Lions J. L., Lectures on elliptic partial differential equations, Tata Inst. Fund. Res., Bombay, 1957 | MR