Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 268-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pointwise approximation of singular integrals $S(f)(x)=\frac 1\pi \int _{-1}^1\frac {f(t)}{t-x}\frac 1{\sqrt {1-t^2}}\,dt$, $x\in (-1,1)$, of functions from the class $W^rH^{\omega }$ by algebraic polynomials is analyzed ($\omega(t)$ is a convex upward modulus of continuity such that $t\omega '(t)$ is a nondecreasing function). The estimates obtained cannot be improved simultaneously for all moduli of continuity.
@article{TM_2001_232_a21,
     author = {V. P. Motornyi},
     title = {Approximation of {a~Class} of {Singular} {Integrals} by {Algebraic} {Polynomials} with {Regard} to the {Location} of {a~Point} on an {Interval}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {268--285},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a21/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 268
EP  - 285
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a21/
LA  - ru
ID  - TM_2001_232_a21
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 268-285
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a21/
%G ru
%F TM_2001_232_a21
V. P. Motornyi. Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 268-285. http://geodesic.mathdoc.fr/item/TM_2001_232_a21/

[1] Nikolskii S. M., “O nailuchshem priblizhenii mnogochlenami funktsii, udovletvoryayuschikh usloviyu Lipshitsa”, Izv. AN SSSR. Ser. mat., 10 (1946), 295–322

[2] Korneichuk N. P., Polovina A. I., “O priblizhenii nepreryvnykh i differentsiruemykh funktsii algebraicheskimi mnogochlenami na otrezke”, DAN SSSR, 166:2 (1966), 281–283 | MR

[3] Korneichuk N. P., Polovina A. I., “O priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, algebraicheskimi mnogochlenami”, Mat. zametki, 9:4 (1971), 441–447 | MR

[4] Korneichuk N. P., Polovina A. I., “O priblizhenii nepreryvnykh funktsii algebraicheskimi mnogochlenami”, Ukr. mat. zhurn., 24:3 (1972), 328–340 | MR

[5] Ligun A. A., “O nailuchshem priblizhenii differentsiruemykh funktsii algebraicheskimi mnogochlenami”, Izv. vuzov. Matematika, 1980, no. 4, 53–60 | MR | Zbl

[6] Temlyakov V. N., “Priblizhenie funktsii iz klassa $W_{\infty}^1$ algebraicheskimi mnogochlenami”, Mat. zametki, 29:4 (1981), 597–602 | MR | Zbl

[7] Brudnyi Yu. A., “Raboty A. F. Timana po polinomialnoi approksimatsii funktsii”, Mater. Vsesoyuz. konf. po teorii priblizheniya funktsii, Dnepropetrovsk, 1991, 13–17

[8] Trigub R. M., “Pryamye teoremy o priblizhenii algebraicheskimi polinomami gladkikh funktsii na otrezke”, Mat. zametki, 54:6 (1993), 113–121 | MR | Zbl

[9] Trigub R. M., “Priblizhenie funktsii mnogochlenami s tselymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 26:2 (1962), 261–280 | MR | Zbl

[10] Motornyi V. P., “Priblizhenie integralov drobnogo poryadka algebraicheskimi mnogochlenami”, Ukr. mat. zhurn., 51:7 (1999), 940–951 | MR | Zbl

[11] Motornyi V. P., “Ob asimptoticheski tochnykh otsenkakh potochechnogo priblizheniya algebraicheskimi mnogochlenami nekotorykh klassov funktsii”, Dokl. RAN, 370:3 (2000), 313–315 | MR | Zbl

[12] Motornyi V. P., Motornaya O. V., “Ob asimptoticheski tochnykh otsenkakh priblizheniya algebraicheskimi mnogochlenami nekotorykh klassov funktsii”, Ukr. mat. zhurn., 52:1 (2000), 85–99 | MR | Zbl

[13] Akhiezer N. I., Krein M. G., “O nailuchshem priblizhenii trigonometricheskimi summami differentsiruemykh periodicheskikh funktsii”, DAN SSSR, 15 (1937), 107–112

[14] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[15] Korneichuk N. P., “O nailuchshem ravnomernom priblizhenii na nekotorykh klassakh nepreryvnykh funktsii”, DAN SSSR, 140 (1961), 748–751

[16] Korneichuk N. P., “O nailuchshem priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 27 (1963), 29–44

[17] Pokrovskii A. V., “Ob odnoi teoreme A. F. Timana”, Funkts. analiz i ego pril., 1:3 (1967), 93–94 | MR | Zbl

[18] Stechkin S. B., “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. mat., 15 (1951), 219–242 | Zbl

[19] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960, 624 pp.