Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 268-285

Voir la notice de l'article provenant de la source Math-Net.Ru

A pointwise approximation of singular integrals $S(f)(x)=\frac 1\pi \int _{-1}^1\frac {f(t)}{t-x}\frac 1{\sqrt {1-t^2}}\,dt$, $x\in (-1,1)$, of functions from the class $W^rH^{\omega }$ by algebraic polynomials is analyzed ($\omega(t)$ is a convex upward modulus of continuity such that $t\omega '(t)$ is a nondecreasing function). The estimates obtained cannot be improved simultaneously for all moduli of continuity.
@article{TM_2001_232_a21,
     author = {V. P. Motornyi},
     title = {Approximation of {a~Class} of {Singular} {Integrals} by {Algebraic} {Polynomials} with {Regard} to the {Location} of {a~Point} on an {Interval}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {268--285},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a21/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 268
EP  - 285
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a21/
LA  - ru
ID  - TM_2001_232_a21
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 268-285
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a21/
%G ru
%F TM_2001_232_a21
V. P. Motornyi. Approximation of a~Class of Singular Integrals by Algebraic Polynomials with Regard to the Location of a~Point on an Interval. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 268-285. http://geodesic.mathdoc.fr/item/TM_2001_232_a21/