On Convergence of Weak Greedy Algorithms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 236-247
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the convergence, in a Hilbert space, of a Weak Greedy Algorithm (WGA) which is a modification of a Pure Greedy Algorithm (PGA). At the $m$th step of a WGA, we choose an approximating element from a given dictionary $\mathcal D$ satisfying the relation $|\langle f^\tau _{m-1},\varphi ^\tau _m\rangle | \ge t_m \sup _{g\in \mathcal D}|\langle f^\tau _{m-1},g\rangle |$ with $0\le t_m\le 1$, which is weaker than the corresponding condition in a PGA. It is known that a WGA converges if $\sum _{k=1}^\infty \frac {t_k}{k} = \infty$. The main result of this paper is the following theorem. Let $t_1\ge t_2\ge \dots \ge 0$ and the corresponding WGA converges for all elements of any separable Hilbert space and any dictionary. Then, $\sum _{k=1}^\infty\frac {t_k}{k} = \infty$.
@article{TM_2001_232_a19,
author = {E. D. Livshits and V. N. Temlyakov},
title = {On {Convergence} of {Weak} {Greedy} {Algorithms}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {236--247},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a19/}
}
E. D. Livshits; V. N. Temlyakov. On Convergence of Weak Greedy Algorithms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 236-247. http://geodesic.mathdoc.fr/item/TM_2001_232_a19/