Best Approximation and Symmetric Decreasing Rearrangements of Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 179-193
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of estimating the best approximation by a subspace of classes of functions of $n$ variables defined by restrictions imposed on the modulus of continuity is considered on the basis of the duality principle. An approach is analyzed that is connected with the representation of a function of $n$ variables as a countable sum of simple functions and the subsequent transition to spatial symmetric decreasing rearrangements.
@article{TM_2001_232_a15,
author = {N. P. Korneichuk},
title = {Best {Approximation} and {Symmetric} {Decreasing} {Rearrangements} of {Functions}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {179--193},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a15/}
}
TY - JOUR AU - N. P. Korneichuk TI - Best Approximation and Symmetric Decreasing Rearrangements of Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 179 EP - 193 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_232_a15/ LA - ru ID - TM_2001_232_a15 ER -
N. P. Korneichuk. Best Approximation and Symmetric Decreasing Rearrangements of Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 179-193. http://geodesic.mathdoc.fr/item/TM_2001_232_a15/