Boundedness and Compactness Criteria for a~Generalized Truncated Potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 164-178

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundedness and compactness criteria are established for a generalized truncated Riesz potential $K_{\alpha} f(x,t) =\int _{|y|\leq 2|x|} (|x-y| +t)^{\alpha -n} f(y)\,dy$, $t\in [0,\infty)$, $x\in \mathbb R^n$, that acts from $L^p (\mathbb R^n)$ to $L_{\nu }^q (\mathbb R_+^{n+1})$, where ${1$, ${0$, ${\alpha >n/p}$, and $\nu$ is a positive Borel measure on $\mathbb R_+^{n+1}$. Also, two-sided estimates for a measure of noncompactness of the operator $K_{\alpha }$ are obtained.
@article{TM_2001_232_a14,
     author = {V. M. Kokilashvili},
     title = {Boundedness and {Compactness} {Criteria} for {a~Generalized} {Truncated} {Potential}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {164--178},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a14/}
}
TY  - JOUR
AU  - V. M. Kokilashvili
TI  - Boundedness and Compactness Criteria for a~Generalized Truncated Potential
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 164
EP  - 178
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a14/
LA  - ru
ID  - TM_2001_232_a14
ER  - 
%0 Journal Article
%A V. M. Kokilashvili
%T Boundedness and Compactness Criteria for a~Generalized Truncated Potential
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 164-178
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a14/
%G ru
%F TM_2001_232_a14
V. M. Kokilashvili. Boundedness and Compactness Criteria for a~Generalized Truncated Potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 164-178. http://geodesic.mathdoc.fr/item/TM_2001_232_a14/