Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2001_232_a10, author = {E. A. Volkov}, title = {On the {Solvability,} in the {Class} of {Polynomials,} of the {Dirichlet} {Problem} for the {Laplace} {Equation} on an {Arbitrary} {Polygon}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {102--114}, publisher = {mathdoc}, volume = {232}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a10/} }
TY - JOUR AU - E. A. Volkov TI - On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 102 EP - 114 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_232_a10/ LA - ru ID - TM_2001_232_a10 ER -
%0 Journal Article %A E. A. Volkov %T On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2001 %P 102-114 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2001_232_a10/ %G ru %F TM_2001_232_a10
E. A. Volkov. On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 102-114. http://geodesic.mathdoc.fr/item/TM_2001_232_a10/
[1] Nikolskii S. M., “Sluchai, kogda reshenie kraevoi zadachi — mnogochlen”, Dokl. RAN, 366:6 (1999), 746–748 | MR
[2] Nikolskii S. M., “Kraevaya zadacha dlya mnogochlenov”, Tr. MIAN, 227, 1999, 223–236 | MR
[3] Nikolskii S. M., “Esche o kraevoi zadache s mnogochlenami”, Tr. MIAN, 286–288 | MR
[4] Volkov E. A., “Kriterii razreshimosti kraevykh zadach dlya uravnenii Laplasa i Puassona na spetsialnykh treugolnikakh i pryamougolnike v algebraicheskikh mnogochlenakh”, Tr. MIAN, 227, 1999, 122–136 | MR | Zbl
[5] Fufaev V. V., “K zadache Dirikhle dlya oblastei s uglami”, DAN SSSR, 131:1 (1960), 37–39 | MR | Zbl
[6] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v konicheskikh oblastyakh”, DAN SSSR, 153:1 (1963), 27–29
[7] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN, 77, 1965, 113–142 | Zbl
[8] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi konicheskikh tochek”, DAN SSSR, 219:3 (1974), 512–515
[9] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR