Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293

Voir la notice de l'article provenant de la source Math-Net.Ru

A pure algebraic description is given for the set of the fundamental groups of the complements of codimension 2 submanifolds in a $k$-dimensional sphere $S^k$, $k\geq 4$. This description is a generalization of the well-known Wirtinger presentation of knot groups to the $k$-dimensional case.
@article{TM_2000_231_a9,
     author = {Vik. S. Kulikov},
     title = {Fundamental {Groups} of the {Complements} to {Codimension~2} {Submanifolds} of {Sphere}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {284--293},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a9/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 284
EP  - 293
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a9/
LA  - ru
ID  - TM_2000_231_a9
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 284-293
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a9/
%G ru
%F TM_2000_231_a9
Vik. S. Kulikov. Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293. http://geodesic.mathdoc.fr/item/TM_2000_231_a9/