Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2000_231_a9, author = {Vik. S. Kulikov}, title = {Fundamental {Groups} of the {Complements} to {Codimension~2} {Submanifolds} of {Sphere}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {284--293}, publisher = {mathdoc}, volume = {231}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a9/} }
TY - JOUR AU - Vik. S. Kulikov TI - Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 284 EP - 293 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2000_231_a9/ LA - ru ID - TM_2000_231_a9 ER -
Vik. S. Kulikov. Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293. http://geodesic.mathdoc.fr/item/TM_2000_231_a9/
[1] Alexander J. W., “Note on Riemann spaces”, Bull. Amer. Math. Soc., 26 (1920), 370–372 | DOI | MR
[2] Artin E., “Isotopic zweidimensionaler Flachen in $\mathbb R^4$”, Abh. Math. Sem. Univ. Hamburg, 4 (1926), 174–177 | DOI
[3] Bernstein I., Edmonds A. L., “The degree and branch set of a branched covering”, Invent. math., 45 (1978), 213–220 | DOI | MR
[4] Gilbert N. D., Howie J., “LOG groups and cyclically presented groups”, J. Algebra, 174:1 (1995), 118–131 | DOI | MR | Zbl
[5] Hilden H. M., “Every closed orientable 3-manifold is a 3-fold branched covering space of $S^3$”, Bull. Amer. Math. Soc., 80 (1974), 1243–1244 | DOI | MR | Zbl
[6] Kervaire M., “On higher dimensional knots”, Differential and combinatorial topology, ed. S. Cairn, Princeton Univ. Press, Princeton, N. J., 1965, 105–120 | MR
[7] Kulikov V. S., “On the fundamental group of the complement of a hypersurface in $\mathbb C^n$”, Lect. Notes Math., 1479, 1991, 122–130 | DOI | MR | Zbl
[8] Kulikov V. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. mat., 58:4 (1994), 194–203 | MR | Zbl
[9] Montesinos J. M., “A representation of closed-orientable 3-manifold as 3-fold branched covering of $S^3$”, Bull. Amer. Math. Soc., 80 (1974), 845–846 | DOI | MR | Zbl
[10] Montesinos J. M., “3-manifold as 3-fold branched covering of $S^3$”, Quart. J. Math. Oxford., ser. 2, 27 (1976), 85–97 | DOI | MR
[11] Montesinos J. M., “4-manifold, 3-fold covering spaces and ribbons”, Trans. Amer. Math. Soc., 245 (1978), 453–467 | DOI | MR | Zbl
[12] Montesinos J. M., “A note on moves and irregular coverings of $S^4$”, Contemp. Math., 44 (1985), 345–349 | MR | Zbl
[13] Piergallini R., “4-manifolds as 4-fold branched covers of $S^4$”, Topology, 34:3 (1995), 497–508 | DOI | MR | Zbl
[14] Zeeman E. C., “Linking spheres”, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 149–153 | DOI | MR | Zbl