Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

A pure algebraic description is given for the set of the fundamental groups of the complements of codimension 2 submanifolds in a $k$-dimensional sphere $S^k$, $k\geq 4$. This description is a generalization of the well-known Wirtinger presentation of knot groups to the $k$-dimensional case.
@article{TM_2000_231_a9,
     author = {Vik. S. Kulikov},
     title = {Fundamental {Groups} of the {Complements} to {Codimension~2} {Submanifolds} of {Sphere}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {284--293},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a9/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 284
EP  - 293
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a9/
LA  - ru
ID  - TM_2000_231_a9
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 284-293
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a9/
%G ru
%F TM_2000_231_a9
Vik. S. Kulikov. Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293. http://geodesic.mathdoc.fr/item/TM_2000_231_a9/

[1] Alexander J. W., “Note on Riemann spaces”, Bull. Amer. Math. Soc., 26 (1920), 370–372 | DOI | MR

[2] Artin E., “Isotopic zweidimensionaler Flachen in $\mathbb R^4$”, Abh. Math. Sem. Univ. Hamburg, 4 (1926), 174–177 | DOI

[3] Bernstein I., Edmonds A. L., “The degree and branch set of a branched covering”, Invent. math., 45 (1978), 213–220 | DOI | MR

[4] Gilbert N. D., Howie J., “LOG groups and cyclically presented groups”, J. Algebra, 174:1 (1995), 118–131 | DOI | MR | Zbl

[5] Hilden H. M., “Every closed orientable 3-manifold is a 3-fold branched covering space of $S^3$”, Bull. Amer. Math. Soc., 80 (1974), 1243–1244 | DOI | MR | Zbl

[6] Kervaire M., “On higher dimensional knots”, Differential and combinatorial topology, ed. S. Cairn, Princeton Univ. Press, Princeton, N. J., 1965, 105–120 | MR

[7] Kulikov V. S., “On the fundamental group of the complement of a hypersurface in $\mathbb C^n$”, Lect. Notes Math., 1479, 1991, 122–130 | DOI | MR | Zbl

[8] Kulikov V. S., “Geometricheskaya realizatsiya $C$-grupp”, Izv. RAN. Ser. mat., 58:4 (1994), 194–203 | MR | Zbl

[9] Montesinos J. M., “A representation of closed-orientable 3-manifold as 3-fold branched covering of $S^3$”, Bull. Amer. Math. Soc., 80 (1974), 845–846 | DOI | MR | Zbl

[10] Montesinos J. M., “3-manifold as 3-fold branched covering of $S^3$”, Quart. J. Math. Oxford., ser. 2, 27 (1976), 85–97 | DOI | MR

[11] Montesinos J. M., “4-manifold, 3-fold covering spaces and ribbons”, Trans. Amer. Math. Soc., 245 (1978), 453–467 | DOI | MR | Zbl

[12] Montesinos J. M., “A note on moves and irregular coverings of $S^4$”, Contemp. Math., 44 (1985), 345–349 | MR | Zbl

[13] Piergallini R., “4-manifolds as 4-fold branched covers of $S^4$”, Topology, 34:3 (1995), 497–508 | DOI | MR | Zbl

[14] Zeeman E. C., “Linking spheres”, Abh. Math. Sem. Univ. Hamburg, 24 (1960), 149–153 | DOI | MR | Zbl