Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293
Voir la notice de l'article provenant de la source Math-Net.Ru
A pure algebraic description is given for the set of the fundamental groups of the complements of codimension 2 submanifolds in a $k$-dimensional sphere $S^k$, $k\geq 4$. This description is a generalization of the well-known Wirtinger presentation of knot groups to the $k$-dimensional case.
@article{TM_2000_231_a9,
author = {Vik. S. Kulikov},
title = {Fundamental {Groups} of the {Complements} to {Codimension~2} {Submanifolds} of {Sphere}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {284--293},
publisher = {mathdoc},
volume = {231},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a9/}
}
TY - JOUR AU - Vik. S. Kulikov TI - Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 284 EP - 293 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2000_231_a9/ LA - ru ID - TM_2000_231_a9 ER -
Vik. S. Kulikov. Fundamental Groups of the Complements to Codimension~2 Submanifolds of Sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 284-293. http://geodesic.mathdoc.fr/item/TM_2000_231_a9/