On Ulam's Problem of Stability of Non-exact Homomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 249-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is mainly devoted to Ulam's problem of stability of approximate homomorphisms, i.e., the problem of approximation of approximate group homomorphisms by exact homomorphisms. We consider the case when one of the groups is equipped with an invariant probability measure while the other one is a countable product of groups equipped with a (pseudo)metric induced by a submeasure on the index set. We demonstrate that, for submeasures satisfying a certain form of the Fubini theorem for the product with probability measures, the stability holds for all measurable homomorphisms. Special attention is given to the case of dyadic submeasures, or, equivalently, approximations modulo an ideal on the index set. Those ideals which give rise to Ulam–stable approximate homomorphisms have recently been distinguished as Radon–Nikodým (or RN) ideals. We prove that this class of ideals contains all Fatou ideals; in particular, all indecomposable ideals and Weiss ideals. Some counterexamples are also considered. In the last part of the paper we study the structure of Borel cohomologies of some groups; in particular, we show that the group $\mathrm H_{\mathrm {Bor}}^2(\mathbb R,G)$ is trivial for any at most countable group $G$.
@article{TM_2000_231_a8,
     author = {V. G. Kanovei and M. Reeken},
     title = {On {Ulam's} {Problem} of {Stability} of {Non-exact} {Homomorphisms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {249--283},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a8/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - M. Reeken
TI  - On Ulam's Problem of Stability of Non-exact Homomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 249
EP  - 283
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a8/
LA  - ru
ID  - TM_2000_231_a8
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A M. Reeken
%T On Ulam's Problem of Stability of Non-exact Homomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 249-283
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a8/
%G ru
%F TM_2000_231_a8
V. G. Kanovei; M. Reeken. On Ulam's Problem of Stability of Non-exact Homomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 249-283. http://geodesic.mathdoc.fr/item/TM_2000_231_a8/

[1] Alekseev M. A., Glebskii L. Yu., Gordon E. I., Ob approksimatsiyakh grupp, gruppovykh deistvii i algebr Khopfa, Preprint 491, Institut prikladnoi fiziki RAN, Nizhnii Novgorod, 1999

[2] Baker D., “Differential characters and Borel cohomology”, Topology, 16:4 (1977), 441–449 | DOI | MR | Zbl

[3] Becker H., Kechris A. S., The descriptive set theory of Polish group actions, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[4] Cartan H., Eilenberg S., Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956 | MR | Zbl

[5] Cattaneo U., “On locally continuous cocycles”, Rept. Math. Phys., 12:1 (1977), 125–132 | DOI | MR | Zbl

[6] Christensen J. P. R., “Some results with relation to the control measure problem”, Vector measures and applications, Lect. Notes Math., 644, Springer, N. Y. etc., 1978, 125–158 | MR

[7] Christensen J. P. R., Kanovei V., Reeken M., “On Borel orderable groups”, Topology Appl., 109:3 (2001), 285–299 | DOI | MR | Zbl

[8] Conne A., Noncommutative geometry, Acad. Press, San Diego (CA), 1994 | MR | Zbl

[9] De Bruijn N. G., “On almost additive functions”, Colloq. Math., 40:1 (1966), 59–63 | MR

[10] DuPre, III, A. M., “Real Borel cohomology of locally compact groups”, Trans. Amer. Math. Soc., 134 (1968), 239–260 | DOI | MR | Zbl

[11] Downarowicz T., Iwanik A., “Quasi-uniform convergence in compact dynamical systems”, Stud. math., 89 (1998), 11–25 | MR

[12] Farah I., “Completely additive liftings”, Bull. Symb. Logic, 4 (1998), 37–54 | DOI | MR | Zbl

[13] Farah I., “Liftings of homomorphisms between quotient structures and finite combinatorics”, Logic Colloquium' 98 (Prague), Lect. Notes Log., 13, Assoc. Symbol. Logic, Urbana, IL, 2000, 173–196 | MR | Zbl

[14] Farah I., “Analytic quotients”, Mem. Amer. Math. Soc., 148, no. 702 (2000) | MR

[15] Farah I., “Approximate homomorphisms”, Combinatorica, 18:3 (1998), 335–348 | DOI | MR | Zbl

[16] Farah I., “Approximate homomorphisms. II. Group homomorphisms”, Combinatorica, 20:1 (2000), 37–60 | DOI | MR

[17] Grigorchuk R. I., “Some results on bounded cohomology”, Combinatorial and geometric group theory, LMS Lect. Note Ser., 204, Cambrigde Univ. Press, Cambrigde, 1994, 111–163 | MR

[18] Grove K., Karcher H., Ruh E. A., “Jakobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems”, Math. Ann., 211 (1974), 7–21 | DOI | MR | Zbl

[19] Hjorth G., Kechris A. S., “New dichotomies for Borel equivalence relations”, Bull. Symb. Logic., 3 (1997), 329–346 | DOI | MR | Zbl

[20] Hyers D. H., “On the stability of the linear functional equation”, Proc. Nat. Acad. Sci. USA, 27 (1941), 222–224 | DOI | MR

[21] Ionescu Tulcea A., Ionescu Tulcea C., Topics in the theory of lifting, Ergeb. Math. und Grenzgeb., 48, Springer-Verl., Berlin, 1969 | Zbl

[22] Kalton N. J., Roberts J. W., “Uniformly exhaustive submeasures and nearly additive set functions”, Trans. Amer. Math. Soc., 278 (1983), 803–816 | DOI | MR | Zbl

[23] Kanovei V., Reeken M., “On Borel automorphisms of the reals modulo a countable group”, Math. Log. Quart., 46:3 (2000), 377–384 | 3.0.CO;2-9 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[24] Kanovei V., Reeken M., “On Ulam stability of the real line”, Unsolved problems on mathematics for the 21st century, IOS, Amsterdam, 2001, 169–181 | MR | Zbl

[25] Kazhdan D., “On $\varepsilon$-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl

[26] Kechris A. S., Classical descriptive set theory, Grad. Texts Math., 156, Springer, N. Y. etc., 1995 | MR | Zbl

[27] Kechris A. S., “Rigidity properties of Borel ideals on the integers”, Top. and Appl., 85 (1998), 195–205 | DOI | MR | Zbl

[28] Kechris A. S., “New directions in descriptive set theory”, Bull. Symb. Logic, 5:2 (1999), 161–174 | DOI | MR | Zbl

[29] Moore C. C., “Extensions and low dimensional cohomology theory of locally compact groups. I”, Trans. Amer. Math. Soc., 113 (1964), 40–63 ; “II”, 64–86 | DOI | MR | Zbl

[30] Serre J. P., Algebraic groups and class fields, Grad. Texts Math., 117, Springer, N. Y. etc., 1988 | MR | Zbl

[31] Shtern A. I., “Almost representations and quasi-symmetry”, Math. Appl., 433 (1998), 337–358 | MR | Zbl

[32] Shtern A. I., “Zhestkost i approksimatsiya kvazipredstavlenii amenabelnykh grupp”, Mat. zametki, 65:6 (1999), 908–920 | MR | Zbl

[33] Solecki S., “Analytic ideals”, Bull. Symb. Logic, 2 (1996), 339–348 | DOI | MR | Zbl

[34] Solecki S., “Filters and sequences”, Fund. math., 163:3 (2000), 215–228 | MR | Zbl

[35] Todorcevic S., “Gaps in analytic quotients”, Fund. math., 156:1 (1998), 85–97 | MR | Zbl

[36] Ulam S. M., Problems in modern mathematics, J. Wiley Sons, N. Y., 1964 | MR | Zbl

[37] Ulam S. M., Mauldin D., “Mathematical problems and games”, Adv. Appl. Math., 8 (1987), 281–344 | DOI | MR | Zbl

[38] Velickovic B., “Definable automorphisms of $\mathcal P(\omega)/\mathrm{Fin}$”, Proc. Amer. Math. Soc., 96 (1986), 130–135 | DOI | MR | Zbl

[39] Wolfram S., Theory and application of cellular automata, World Sci., Singapore, 1986 | MR | Zbl