Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2000_231_a7, author = {I. A. Dynnikov}, title = {Finitely {Presented} {Groups} and {Semigroups} in {Knot} {Theory}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {231--248}, publisher = {mathdoc}, volume = {231}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a7/} }
I. A. Dynnikov. Finitely Presented Groups and Semigroups in Knot Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 231-248. http://geodesic.mathdoc.fr/item/TM_2000_231_a7/
[1] Turaev V. G., “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR. Ser. mat., 53:5 (1989), 1073–1107 | MR
[2] Matveev S. V., “Klassifikatsiya dostatochno bolshikh trekhmernykh mnogoobrazii”, UMN, 52:5 (1997), 147–174 | MR | Zbl
[3] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Kodirovanie i lokalnye dvizheniya”, Funkts. analiz i ego pril., 33:4 (1999), 25–37 | MR | Zbl
[4] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Universalnaya polugruppa”, Funkts. analiz i ego pril., 34:1 (2000), 29–40 | MR | Zbl