Finitely Presented Groups and Semigroups in Knot Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 231-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct finitely presented semigroups whose central elements are in one-to-one correspondence with the isotopy classes of non-oriented links in $\mathbb R^3$. Solving the word problem for those semigroups is equivalent to solving the classification problem for links and tangles. Also, we give a construction of finitely presented groups containing the braid group as a subgroup.
@article{TM_2000_231_a7,
     author = {I. A. Dynnikov},
     title = {Finitely {Presented} {Groups} and {Semigroups} in {Knot} {Theory}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {231--248},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a7/}
}
TY  - JOUR
AU  - I. A. Dynnikov
TI  - Finitely Presented Groups and Semigroups in Knot Theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 231
EP  - 248
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a7/
LA  - ru
ID  - TM_2000_231_a7
ER  - 
%0 Journal Article
%A I. A. Dynnikov
%T Finitely Presented Groups and Semigroups in Knot Theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 231-248
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a7/
%G ru
%F TM_2000_231_a7
I. A. Dynnikov. Finitely Presented Groups and Semigroups in Knot Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 231-248. http://geodesic.mathdoc.fr/item/TM_2000_231_a7/

[1] Turaev V. G., “Operatornye invarianty svyazok i $R$-matritsy”, Izv. AN SSSR. Ser. mat., 53:5 (1989), 1073–1107 | MR

[2] Matveev S. V., “Klassifikatsiya dostatochno bolshikh trekhmernykh mnogoobrazii”, UMN, 52:5 (1997), 147–174 | MR | Zbl

[3] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Kodirovanie i lokalnye dvizheniya”, Funkts. analiz i ego pril., 33:4 (1999), 25–37 | MR | Zbl

[4] Dynnikov I. A., “Trekhstranichnyi podkhod v teorii uzlov. Universalnaya polugruppa”, Funkts. analiz i ego pril., 34:1 (2000), 29–40 | MR | Zbl