On the Spectrum of Hecke Type Operators Related to Some Fractal Groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 5-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the first example of a connected 4-regular graph whose Laplace operator's spectrum is a Cantor set, as well as several other computations of spectra following a common “finite approximation” method. These spectra are simple transforms of the Julia sets associated to some quadratic maps. The graphs involved are Schreier graphs of fractal groups of intermediate growth, and are also “substitutional graphs”. We also formulate our results in terms of Hecke type operators related to some irreducible quasi-regular representations of fractal groups and in terms of the Markovian operator associated to noncommutative dynamical systems via which these fractal groups were originally defined in \cite {grigorchuk:burnside}.\lb In the computations we performed, the self-similarity of the groups is reflected in the self-similarity of some operators; they are approximated by finite counterparts whose spectrum is computed by an ad hoc factorization process.
@article{TM_2000_231_a0,
     author = {L. Bartholdi and R. I. Grigorchuk},
     title = {On the {Spectrum} of {Hecke} {Type} {Operators} {Related} to {Some} {Fractal} {Groups}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--45},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a0/}
}
TY  - JOUR
AU  - L. Bartholdi
AU  - R. I. Grigorchuk
TI  - On the Spectrum of Hecke Type Operators Related to Some Fractal Groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 5
EP  - 45
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a0/
LA  - en
ID  - TM_2000_231_a0
ER  - 
%0 Journal Article
%A L. Bartholdi
%A R. I. Grigorchuk
%T On the Spectrum of Hecke Type Operators Related to Some Fractal Groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 5-45
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a0/
%G en
%F TM_2000_231_a0
L. Bartholdi; R. I. Grigorchuk. On the Spectrum of Hecke Type Operators Related to Some Fractal Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 5-45. http://geodesic.mathdoc.fr/item/TM_2000_231_a0/

[1] Barnsley M., Fractals everywhere, Acad. Press, Boston (MA), 1988 | MR | Zbl

[2] Bartholdi L., A class of groups acting on rooted trees, Preprint Univ. Genève, 1999

[3] Baumslag G., Topics in combinatorial group theory, Lect. Math. ETH Zürich, Birkhäuser, Basel, 1993 | MR | Zbl

[4] Bartholdi L., Grigorchuk R. I., On parabolic subgroups and quasi-regular representations of some fractal groups, Preprint Univ. Genève, 1999

[5] Burger M., de la Harpe P., “Constructing irreducible representations of discrete groups”, Proc. Indian Acad. Sci. Math. Sci., 107:3 (1997), 223–235 | DOI | MR | Zbl

[6] Brauer W., Automatentheorie (Eine Einführung in die Theorie endlicher Automaten), B. G. Teubner, Stuttgart, 1984 | MR | Zbl

[7] Béllissard J., Simon B., “Cantor spectrum for the almost Mathieu equation”, J. Funct. Anal., 48:3 (1982), 408–419 | DOI | MR | Zbl

[8] Béguin C., Valette A., Żuk A., “On the spectrum of a random walk on the discrete Heisenberg group and the norm of Harper's operator”, J. Geom. and Phys., 21:4 (1997), 337–356 | DOI | MR | Zbl

[9] Cvetković D. M., Doob M., Sachs H., Spectra of graphs, VEB Dtsch. Verl. Wissensch., Berlin, 1980 ; Spectra of graphs, Pure and Appl. Math., 87, Acad. Press, N. Y., 1980 ; Tsvetkovich D. M., Dub M., Zakhs Kh., Spektry grafov, Nauk. dumka, Kiev, 1984 | Zbl | MR | Zbl | MR

[10] de lya Arp P., Grigorchuk R. I., Chekerini-Silberstain T., “Amenabelnost i paradoksalnye razbieniya dlya psevdogrupp i diskretnykh metricheskikh prostranstv”, Tr. MIAN, 224, 1999, 68–111

[11] Carey A. L., Hannabuss K. C., Mathai V., McCann P. J., “Quantum Hall effect on the hyperbolic plane”, Commun. Math. Phys., 190:3 (1998), 629–673 | DOI | MR | Zbl

[12] Ceccherini-Silberstein T. G., Machì A., Scarabotti F., “Un'introduzione al gruppo di Grigorchuk”, Rend. Circ. mat. Palermo (to appear)

[13] Connes A., Noncommutative geometry, Acad. Press, San Diego (CA), 1994 | MR | Zbl

[14] Dixmier J., $C^*$-algebras, Transl. from French by F. Jellett, North-Holland Math. Libr., 15, North-Holland, Amsterdam, 1977 | MR | Zbl

[15] de Melo W., van Strien S., One-dimensional dynamics, Springer, Berlin etc., 1993 | MR | Zbl

[16] Epstein D. B. A., Cannon J. W., Holt D. F., Levy S. V. F., Paterson M. S., Thurston W. P., Word processing and group theory, Jones and Bartlett, Boston, 1992 | MR | Zbl

[17] Eilenberg S., Automata, languages, and machines, v. A, Acad. Press, New York–London, 1974 | MR | Zbl

[18] Farber M., “Geometry of growth: approximation theorems for $L^2$ invariants”, Math. Ann., 311:2 (1998), 335–375 | DOI | MR | Zbl

[19] Fabrykowski J., Gupta N., “On groups with sub-exponential growth functions. II”, J. Indian Math. Soc., 56:1–4 (1991), 217–228 | MR | Zbl

[20] Følner E., “Note on groups with and without full Banach mean value”, Math. scand., 5 (1957), 5–11 | MR

[21] Gécseg F., Csákány B., Algebraic theory of automata, Akad. Kiado, Budapest, 1971 | Zbl

[22] Glushkov V. M., “Abstraktnaya teoriya avtomatov”, UMN, 16:5 (1961), 3–62 | MR

[23] Grigorchuk R. I., “K probleme Bernsaida o periodicheskikh gruppakh”, Funkts. analiz i ego pril., 14:1 (1980), 53–54 | MR | Zbl

[24] Grigorchuk R. I., “K probleme Milnora o gruppovom roste”, DAN SSSR, 271:1 (1983), 30–33 | MR | Zbl

[25] Grigorchuk R. I., “Stepeni rosta konechno porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR

[26] Grigorchuk R. I., “O stepenyakh rosta $p$-grupp i grupp bez krucheniya”, Mat. sb., 126:2 (1985), 194–214 | MR | Zbl

[27] Grigorchuk R. I., “Just infinite branch groups”, New horizons in pro-$p$ groups, Progr. Math., 184, eds. M. du Sautoy, D. Segal, A. Shalev, Birkhäuser, Boston etc., 2000, 121–179 | MR | Zbl

[28] Gromov M., “Infinite groups as geometric objects”, Proc. Intern. Congr. Math. Warsaw, v. 1–2 (1983, Warsaw), PWN, 1984, 385–392 | MR

[29] Gupta N., Sidki S., “On the Burnside problem for periodic groups”, Math. Ztschr., 182 (1983), 385–388 | DOI | MR | Zbl

[30] Gupta N., Sidki S., “Some infinite $p$-groups”, Algebra i logika, 22:5 (1983), 584–589 | MR | Zbl

[31] Gordon C., Webb D. L., Wolpert S., “One cannot hear the shape of a drum”, Bull. Amer. Math. Soc., 27:1 (1992), 134–138 | DOI | MR | Zbl

[32] Grigorchuk R. I., Żuk A., “On the asymptotic spectrum of random walks on infinite families of graphs”, Random walks and discrete potential theory (Proc. Conf. Cortona, 22–28 June 1997), Sympos. math., 22, eds. M. Picardello, W. Woess, Cambridge Univ. Press, Cambridge, 1999, 134–150 | MR

[33] de la Harpe P., Topics in geometric group theory, Univ. Chicago Press, Chicago, 2000 | MR

[34] Higson N., Kasparov G. G., “Operator $K$-theory for groups which act properly and isometrically on Hilbert space”, Electron. Res. Announc. Amer. Math. Soc., 3 (1997), 131–142, electronic | DOI | MR | Zbl

[35] Hořejš J., “Preobrazovaniya, opredelennye konechnymi avtomatami”, Problemy kibernetiki, 9 (1963), 23–26

[36] de la Harpe P., Robertson A. G., Valette A., “On the spectrum of the sum of generators for a finitely generated group”, Israel J. Math., 81:1–2 (1993), 65–96 | DOI | MR | Zbl

[37] de la Harpe P., Robertson A. G., Valette A., “On the spectrum of the sum of generators of a finitely generated group. II”, Colloq. Math., 65:1 (1993), 87–102 | MR | Zbl

[38] Kać M., “Can one hear the shape of a drum?”, Amer. Math. Month., 73:4 (1996), 1–23 | DOI | MR

[39] Kazhdan D. A., “Ravnomernoe raspredelenie na ploskosti”, Tr. Mosk. mat. o-va, 14, 1965, 299–305 | Zbl

[40] Kesten H., “Symmetric random walks on groups”, Trans. Amer. Math. Soc., 92 (1959), 336–354 | DOI | MR | Zbl

[41] Li W., Number theory with applications, World Sci., Singapore, 1996 | MR

[42] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Birkhäuser, Basel, 1994 | MR | Zbl

[43] Lubotzky A., “Cayley graphs: Eigenvalues, expanders and random walks”, Surveys in combinatorics, Cambridge Univ. Press, Cambridge, 1995, 155–189 | MR | Zbl

[44] Lück W., “Approximating $L^2$-invariants by their finite-dimensional analogues”, Geom. Funct. Anal., 4:4 (1994), 455–481 | DOI | MR | Zbl

[45] Lysenok I. G., “Sistema opredelyayuschikh sootnoshenii dlya gruppy Grigorchuka”, Mat. zametki, 38:4 (1985), 503–516 | MR | Zbl

[46] Mackey G. W., The theory of unitary group representations, Univ. Chicago Press, Chicago (Ill.), 1976, Based on notes by J. M. G. Fell and D. B. Lowdenslager of lectures given at the University of Chicago. Chicago (Ill.), 1955. (Chicago Lect. Math.) | MR | Zbl

[47] Malozemov L., “Random walk and chaos of the spectrum. Solvable model”, Chaos, Solitons, and Fractals, 5:6 (1995), 895–907 | DOI | MR | Zbl

[48] Moser J., “An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum”, Comment. math. helv., 56:2 (1981), 198–224 | DOI | MR | Zbl

[49] Martin F., Valette A., “Markov operators on the solvable Baumslag–Solitar groups”, Exp. Math., 9 (2000), 291–300 | MR | Zbl

[50] Novikov S. P., “Operator Shrëdingera na grafakh i topologiya”, UMN, 52:6 (1997), 177–178 | MR | Zbl

[51] Nekrashevych V. V., Sushchansky V. I., “On confinal dynamics of rooted tree automorphisms”, Computational and geometric aspects of modern algebra, LMS Lect. Note Ser., 275, eds. M. Atkinson et al., Cambridge Univ. Press, Cambridge, 2000, 229–246 | MR

[52] Paulin F., “Analyse harmonique des relations d'équivalence mesurées discrètes”, Markov Processes and Related Fields, 5, 1999, 163–200 | MR | Zbl

[53] Previte J. P., “Graph substitutions”, Ergod. Th. and Dyn. Syst., 18:3 (1998), 661–685 | DOI | MR | Zbl

[54] Rozenberg G., Salomaa A., The mathematical theory of $L$ systems, Acad. Press, N. Y., 1980 | MR

[55] Ribes L., Zalesskiĭ P., “Pro-$p$ trees and applications”, New horizons in pro-$p$ groups, Progr. Math., 184, eds. M. du Sautoy, D. Segal, A. Shalev, Birkhäuser, Boston etc., 2000, 75–119 | MR | Zbl

[56] Serr Zh.-P., Kurs arifmetiki, per. s fr., Mir, M., 1972 | MR | Zbl

[57] Serre J.-P., “Répartition asymptotique des valeurs propres de l'opérateur de Hecke $T_p$”, J. Amer. Math. Soc., 10:1 (1997), 75–102 | DOI | MR | Zbl

[58] Sidki S., “On a 2-generated infinite 3-group: subgroups and automorphisms”, J. Algebra, 110:1 (1987), 24–55 | DOI | MR | Zbl

[59] Sidki S., “On a 2-generated infinite 3-group: the presentation problem”, J. Algebra, 110:1 (1987), 13–23 | DOI | MR | Zbl

[60] Valette A., “The conjecture of idempotents: A survey of the $C^*$-algebraic approach”, Bull. Soc. Math. Belg. (A), 1989, no. 3, 485–521 | MR | Zbl

[61] von Neumann J., “Zur allgemeinen Theorie des Masses”, Fund. math., 13 (1929), 73–116, 333 ; Collected works, 1, 599–643 | Zbl

[62] Woess W., “Random walks on infinite graphs and groups – a survey on selected topics”, Bull. London Math. Soc., 26 (1994), 1–60 | DOI | MR | Zbl