Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 90-100

Voir la notice de l'article provenant de la source Math-Net.Ru

The axiomatic formulation of quantum field theory (QFT) of the 1950's in terms of fields defined as operator valued Schwartz distributions is re-examined in the light of subsequent developments. These include, on the physical side, the construction of a wealth of (2-dimensional) soluble QFT models with quadratic exchange relations, and, on the mathematical side, the introduction of the Colombeau algebras of generalized functions. Exploiting the fact that energy positivity gives rise to a natural regularization of Wightman distributions as analytic functions in a tube domain, we argue that the flexible notions of Colombeau theory which can exploit particular regularizations is better suited (than Schwartz distributions) for a mathematical formulation of QFT.
@article{TM_2000_228_a7,
     author = {H. Grosse and M. Oberguggenberger and I. T. Todorov},
     title = {Generalized {Functions} for {Quantum} {Fields} {Obeying} {Quadratic} {Exchange} {Relations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {90--100},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a7/}
}
TY  - JOUR
AU  - H. Grosse
AU  - M. Oberguggenberger
AU  - I. T. Todorov
TI  - Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 90
EP  - 100
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a7/
LA  - en
ID  - TM_2000_228_a7
ER  - 
%0 Journal Article
%A H. Grosse
%A M. Oberguggenberger
%A I. T. Todorov
%T Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 90-100
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a7/
%G en
%F TM_2000_228_a7
H. Grosse; M. Oberguggenberger; I. T. Todorov. Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 90-100. http://geodesic.mathdoc.fr/item/TM_2000_228_a7/