Simple Random Walks along Orbits of Anosov Diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 236-245
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a Markov chain whose phase space is a $d$-dimensional torus. A point $x$ jumps to $x+\omega$ with probability $p(x)$ and to $x-\omega$ with probability $1-p(x)$. For Diophantine $\omega$ and smooth $p$ we prove that this Maslov chain has an absolutely continuous invariant measure and the distribution of any point after $n$ steps converges to this measure.
@article{TM_2000_228_a17,
author = {V. Y. Kaloshin and Ya. G. Sinai},
title = {Simple {Random} {Walks} along {Orbits} of {Anosov} {Diffeomorphisms}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {236--245},
publisher = {mathdoc},
volume = {228},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a17/}
}
TY - JOUR AU - V. Y. Kaloshin AU - Ya. G. Sinai TI - Simple Random Walks along Orbits of Anosov Diffeomorphisms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 236 EP - 245 VL - 228 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2000_228_a17/ LA - en ID - TM_2000_228_a17 ER -
V. Y. Kaloshin; Ya. G. Sinai. Simple Random Walks along Orbits of Anosov Diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 236-245. http://geodesic.mathdoc.fr/item/TM_2000_228_a17/