Simple Random Walks along Orbits of Anosov Diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 236-245

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Markov chain whose phase space is a $d$-dimensional torus. A point $x$ jumps to $x+\omega$ with probability $p(x)$ and to $x-\omega$ with probability $1-p(x)$. For Diophantine $\omega$ and smooth $p$ we prove that this Maslov chain has an absolutely continuous invariant measure and the distribution of any point after $n$ steps converges to this measure.
@article{TM_2000_228_a17,
     author = {V. Y. Kaloshin and Ya. G. Sinai},
     title = {Simple {Random} {Walks} along {Orbits} of {Anosov} {Diffeomorphisms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {236--245},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a17/}
}
TY  - JOUR
AU  - V. Y. Kaloshin
AU  - Ya. G. Sinai
TI  - Simple Random Walks along Orbits of Anosov Diffeomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 236
EP  - 245
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a17/
LA  - en
ID  - TM_2000_228_a17
ER  - 
%0 Journal Article
%A V. Y. Kaloshin
%A Ya. G. Sinai
%T Simple Random Walks along Orbits of Anosov Diffeomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 236-245
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a17/
%G en
%F TM_2000_228_a17
V. Y. Kaloshin; Ya. G. Sinai. Simple Random Walks along Orbits of Anosov Diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 236-245. http://geodesic.mathdoc.fr/item/TM_2000_228_a17/