Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 136-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Wigner Function for the case of particles with relativistic Hamiltonian $H(\mathbf p)=\sqrt{\mathbf p^2+m^2}$ is given; the transformation properties of the wave functions with respect to the Lorentz group are discussed.
@article{TM_2000_228_a10,
     author = {O. I. Zavialov},
     title = {Relativistic {Wigner} {Function} and {Nonlinear} {Representations} of the {Lorentz} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {136--144},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a10/}
}
TY  - JOUR
AU  - O. I. Zavialov
TI  - Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 136
EP  - 144
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a10/
LA  - ru
ID  - TM_2000_228_a10
ER  - 
%0 Journal Article
%A O. I. Zavialov
%T Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 136-144
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a10/
%G ru
%F TM_2000_228_a10
O. I. Zavialov. Relativistic Wigner Function and Nonlinear Representations of the Lorentz Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 136-144. http://geodesic.mathdoc.fr/item/TM_2000_228_a10/

[1] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[2] Wigner E., “On the quantum correction for thermodynamic equilibrium”, Phys. Rev., 40 (1932), 749–759 | DOI

[3] Shirokov Yu. M., “Teoriya vozmuschenii po postoyannoi Planka”, TMF, 31 (1977), 327–332

[4] Shirokov Yu. M., “Edinyi formalizm dlya kvantovoi i klassicheskoi teorii rasseyaniya”, TMF, 38 (1979), 313–320 | MR

[5] Tatarskii V. I., “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139 (1983), 587–619 | MR

[6] Zavyalov O. I., Malokostov A. M., “Funktsiya Vignera dlya svobodnykh relyativistskikh chastits”, TMF, 119:1 (1999), 67–72

[7] Newton T., Wigner E., “On the coordinate operator in relativistic quantum mechanics”, Rev. Mod. Phys., 21 (1949), 400–410 | DOI