A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kervaire invariant is a $Z/2$-invariant of framed manifolds of dimension $n=4k+2$. W. Browder proved that this invariant necessarily vanishes if $n+2$ is not a power of 2. We give a geometrical proof of this result using a characterization of the Kervaire invariant in terms of multiple points of immersions.
@article{TM_1999_225_a3,
author = {P. M. Akhmet'ev and P. J. Eccles},
title = {A {Geometrical} {Proof} of {Browder's} {Result} on the {Vanishing} of the {Kervaire} {Invariant}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {46--51},
publisher = {mathdoc},
volume = {225},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a3/}
}
TY - JOUR AU - P. M. Akhmet'ev AU - P. J. Eccles TI - A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 46 EP - 51 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1999_225_a3/ LA - ru ID - TM_1999_225_a3 ER -
%0 Journal Article %A P. M. Akhmet'ev %A P. J. Eccles %T A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1999 %P 46-51 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1999_225_a3/ %G ru %F TM_1999_225_a3
P. M. Akhmet'ev; P. J. Eccles. A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51. http://geodesic.mathdoc.fr/item/TM_1999_225_a3/