A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kervaire invariant is a $Z/2$-invariant of framed manifolds of dimension $n=4k+2$. W. Browder proved that this invariant necessarily vanishes if $n+2$ is not a power of 2. We give a geometrical proof of this result using a characterization of the Kervaire invariant in terms of multiple points of immersions.
@article{TM_1999_225_a3,
     author = {P. M. Akhmet'ev and P. J. Eccles},
     title = {A {Geometrical} {Proof} of {Browder's} {Result} on the {Vanishing} of the {Kervaire} {Invariant}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a3/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - P. J. Eccles
TI  - A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 46
EP  - 51
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a3/
LA  - ru
ID  - TM_1999_225_a3
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A P. J. Eccles
%T A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 46-51
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a3/
%G ru
%F TM_1999_225_a3
P. M. Akhmet'ev; P. J. Eccles. A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51. http://geodesic.mathdoc.fr/item/TM_1999_225_a3/