Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1999_225_a3, author = {P. M. Akhmet'ev and P. J. Eccles}, title = {A {Geometrical} {Proof} of {Browder's} {Result} on the {Vanishing} of the {Kervaire} {Invariant}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {46--51}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a3/} }
TY - JOUR AU - P. M. Akhmet'ev AU - P. J. Eccles TI - A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 46 EP - 51 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1999_225_a3/ LA - ru ID - TM_1999_225_a3 ER -
%0 Journal Article %A P. M. Akhmet'ev %A P. J. Eccles %T A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1999 %P 46-51 %V 225 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1999_225_a3/ %G ru %F TM_1999_225_a3
P. M. Akhmet'ev; P. J. Eccles. A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51. http://geodesic.mathdoc.fr/item/TM_1999_225_a3/
[1] Akhmetiev P. M., Szűcs A., “On the Hopf invariant in the homotopy groups of spheres: a geometric approach”, Math. Slovaca, 1999 (to appear)
[2] Asadi-Golmankhaneh M. A., Self-intersection manifolds of immersions, Ph.D. Thes., Univ. Manchester, 1998
[3] Asadi-Golmankhaneh M. A., Eccles P. J., “Determining the characteristic numbers of self-intersection manifolds”, J. London Math. Soc., 1999 (to appear) | MR
[4] Barratt M. G., Jones J. D. S., Mahowald M. E., “Relations amongst Toda brackets and the Kervaire invariant in dimension 62”, J. London Math. Soc., ser. 2, 30 (1984), 533–550 | DOI | MR | Zbl
[5] Browder W., “The Kervaire invariant of framed manifolds and its generalization”, Ann. Math., ser. 2, 90 (1969), 157–186 | DOI | MR | Zbl
[6] Brown E. H., “Generalizations of the Kervaire invariant”, Ann. Math., ser. 2, 95 (1972), 368–383 | DOI | MR | Zbl
[7] Brown E. H., Peterson F. P., “The Kervaire invariant of $(8k+2)$-manifolds”, Bull. Amer. Math. Soc., 71 (1965), 190–193 | DOI | MR | Zbl
[8] Eccles P. J., “Codimension one immersions and the Kervaire invariant one problem”, Math. Proc. Cambridge Phil. Soc., 90 (1981), 483–493 | DOI | MR | Zbl
[9] Eccles P. J., “Characteristic numbers of immersions and self-intersection manifolds”, Proc. Colloq. Topology (Szekszárd (Hungary), aug. 1993), Bolyai Soc. Math. Stud., 4, J. Bolyai Math. Soc., Budapest, 1995, 197–216 | MR | Zbl
[10] Hirsch M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl
[11] Jones J. D. S., “The Kervaire invariant of extended power manifolds”, Topology, 17 (1978), 249–266 | DOI | MR | Zbl
[12] Jones J., Rees E., “Kervaire's invariant for framed manifolds”, Algebraic and geometric topology, Part 1 (Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., 32, Amer. Math. Soc., Providence, R.I., 1978, 141–147 | MR
[13] Kervaire M. A., “A manifold which does not admit any differentiable structure”, Comment. Math. Helv., 34 (1960), 257–270 | DOI | MR | Zbl
[14] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres, I”, Ann. Math., 77 (1963), 504–537 | DOI | MR | Zbl
[15] Mahowald M. E., Tangora M. C., “Some differentials in the Adams spectral sequence”, Topology, 6 (1967), 249–369 | MR
[16] Novikov S. P., “Gomotopicheskie ekvivalentnye gladkie mnogoobraziya, I”, Izv. AN SSSR. Ser. mat., 28 (1964), 365–474
[17] Pontryagin L. S., Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, Nauka, M., 1983 | MR | Zbl
[18] Ray N., “A geometrical observation on the Arf invariant of a framed manifold”, Bull. London Math. Soc., 4 (1972), 163–164 | DOI | MR | Zbl
[19] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl