A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kervaire invariant is a $Z/2$-invariant of framed manifolds of dimension $n=4k+2$. W. Browder proved that this invariant necessarily vanishes if $n+2$ is not a power of 2. We give a geometrical proof of this result using a characterization of the Kervaire invariant in terms of multiple points of immersions.
@article{TM_1999_225_a3,
     author = {P. M. Akhmet'ev and P. J. Eccles},
     title = {A {Geometrical} {Proof} of {Browder's} {Result} on the {Vanishing} of the {Kervaire} {Invariant}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--51},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a3/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - P. J. Eccles
TI  - A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 46
EP  - 51
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a3/
LA  - ru
ID  - TM_1999_225_a3
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A P. J. Eccles
%T A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 46-51
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a3/
%G ru
%F TM_1999_225_a3
P. M. Akhmet'ev; P. J. Eccles. A Geometrical Proof of Browder's Result on the Vanishing of the Kervaire Invariant. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 46-51. http://geodesic.mathdoc.fr/item/TM_1999_225_a3/

[1] Akhmetiev P. M., Szűcs A., “On the Hopf invariant in the homotopy groups of spheres: a geometric approach”, Math. Slovaca, 1999 (to appear)

[2] Asadi-Golmankhaneh M. A., Self-intersection manifolds of immersions, Ph.D. Thes., Univ. Manchester, 1998

[3] Asadi-Golmankhaneh M. A., Eccles P. J., “Determining the characteristic numbers of self-intersection manifolds”, J. London Math. Soc., 1999 (to appear) | MR

[4] Barratt M. G., Jones J. D. S., Mahowald M. E., “Relations amongst Toda brackets and the Kervaire invariant in dimension 62”, J. London Math. Soc., ser. 2, 30 (1984), 533–550 | DOI | MR | Zbl

[5] Browder W., “The Kervaire invariant of framed manifolds and its generalization”, Ann. Math., ser. 2, 90 (1969), 157–186 | DOI | MR | Zbl

[6] Brown E. H., “Generalizations of the Kervaire invariant”, Ann. Math., ser. 2, 95 (1972), 368–383 | DOI | MR | Zbl

[7] Brown E. H., Peterson F. P., “The Kervaire invariant of $(8k+2)$-manifolds”, Bull. Amer. Math. Soc., 71 (1965), 190–193 | DOI | MR | Zbl

[8] Eccles P. J., “Codimension one immersions and the Kervaire invariant one problem”, Math. Proc. Cambridge Phil. Soc., 90 (1981), 483–493 | DOI | MR | Zbl

[9] Eccles P. J., “Characteristic numbers of immersions and self-intersection manifolds”, Proc. Colloq. Topology (Szekszárd (Hungary), aug. 1993), Bolyai Soc. Math. Stud., 4, J. Bolyai Math. Soc., Budapest, 1995, 197–216 | MR | Zbl

[10] Hirsch M. W., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl

[11] Jones J. D. S., “The Kervaire invariant of extended power manifolds”, Topology, 17 (1978), 249–266 | DOI | MR | Zbl

[12] Jones J., Rees E., “Kervaire's invariant for framed manifolds”, Algebraic and geometric topology, Part 1 (Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., 32, Amer. Math. Soc., Providence, R.I., 1978, 141–147 | MR

[13] Kervaire M. A., “A manifold which does not admit any differentiable structure”, Comment. Math. Helv., 34 (1960), 257–270 | DOI | MR | Zbl

[14] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres, I”, Ann. Math., 77 (1963), 504–537 | DOI | MR | Zbl

[15] Mahowald M. E., Tangora M. C., “Some differentials in the Adams spectral sequence”, Topology, 6 (1967), 249–369 | MR

[16] Novikov S. P., “Gomotopicheskie ekvivalentnye gladkie mnogoobraziya, I”, Izv. AN SSSR. Ser. mat., 28 (1964), 365–474

[17] Pontryagin L. S., Gladkie mnogoobraziya i ikh primeneniya v teorii gomotopii, Nauka, M., 1983 | MR | Zbl

[18] Ray N., “A geometrical observation on the Arf invariant of a framed manifold”, Bull. London Math. Soc., 4 (1972), 163–164 | DOI | MR | Zbl

[19] Wells R., “Cobordism groups of immersions”, Topology, 5 (1966), 281–294 | DOI | MR | Zbl